The Emergence of Escherichia coli O157:H7 Infection in the United States

JAMA ◽  
1993 ◽  
Vol 269 (17) ◽  
pp. 2264 ◽  
Author(s):  
Kristine L. MacDonald
2001 ◽  
Vol 84 (3) ◽  
pp. 737-751 ◽  
Author(s):  
Charles B Bird ◽  
Rebecca J Hoerner ◽  
Lawrence Restaino ◽  
G Anderson ◽  
W Birbari ◽  
...  

Abstract Four different food types along with environmental swabs were analyzed by the Reveal for E. coli O157:H7 test (Reveal) and the Bacteriological Analytical Manual (BAM) culture method for the presence of Escherichia coli O157:H7. Twenty-seven laboratories representing academia and private industry in the United States and Canada participated. Sample types were inoculated with E. coli O157:H7 at 2 different levels. Of the 1095 samples and controls analyzed and confirmed, 459 were positive and 557 were negative by both methods. No statistical differences (p <0.05) were observed between the Reveal and BAM methods.


2006 ◽  
Vol 69 (5) ◽  
pp. 1154-1158 ◽  
Author(s):  
MARGARET L. KHAITSA ◽  
MARC L. BAUER ◽  
GREGORY P. LARDY ◽  
DAWN K. DOETKOTT ◽  
REDEMPTA B. KEGODE ◽  
...  

Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157: H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P < 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.


2000 ◽  
Vol 63 (6) ◽  
pp. 819-821 ◽  
Author(s):  
DAVID W. K. ACHESON

Escherichia coli O157:H7 is but one of a group of Shiga toxin-producing E. coli (STEC) that cause both intestinal disease such as bloody and nonbloody diarrhea and serious complications like hemolytic uremic syndrome (HUS). While E. coli O157: H7 is the most renowned STEC, over 200 different types of STEC have been documented in meat and animals, at least 60 of which have been linked with human disease. A number of studies have suggested that non-O157 STEC are associated with clinical disease, and non-O157 STEC are present in the food supply. Non-O157 STEC, such as O111 have caused large outbreaks and HUS in the United States and other countries. The current policy in the United States is to examine ground beef for O157:H7 only, but restricting the focus to O157 will miss other important human STEC pathogens.


1997 ◽  
Vol 60 (5) ◽  
pp. 462-465 ◽  
Author(s):  
DALE D. HANCOCK ◽  
DANIEL H. RICE ◽  
LEE ANN THOMAS ◽  
DAVID A. DARGATZ ◽  
THOMAS E. BESSER

Fecal samples from cattle in 100 feedlots in 13 states were bacteriologically cultured for Escherichia coli O157 that did not ferment sorbitol, lacked beta-glucuronidase, and possessed genes coding for Shiga-like toxin. In each feedlot 30 fresh fecal-pat samples were collected from each of four pens: with the cattle shortest on feed, with cattle longest on feed, and with cattle in two randomly selected pens. E. coli O157 was isolated from 210 (1.8%) of 11,881 fecal samples. One or more samples were positive for E. coli O157 in 63 of the 100 feedlots tested. E. coli O157 was found at roughly equal prevalence in all the geographical regions sampled. The prevalence of E. coli O157 in the pens with cattle shortest on feed was approximately threefold higher than for randomly selected and longest on feed pens. Of the E. coli O157 isolates found in this study, 89.52% expressed the H7 flagellar antigen. E. coli O157 was found to be widely distributed among feedlot cattle, but at a low prevalence, in the United States.


2005 ◽  
Vol 68 (12) ◽  
pp. 2623-2630 ◽  
Author(s):  
PAUL D. FRENZEN ◽  
ALISON DRAKE ◽  
FREDERICK J. ANGULO ◽  

The Centers for Disease Control and Prevention (CDC) has estimated that Shiga toxin–producing Escherichia coli O157 (O157 STEC) infections cause 73,000 illnesses annually in the United States, resulting in more than 2,000 hospitalizations and 60 deaths. In this study, the economic cost of illness due to O157 STEC infections transmitted by food or other means was estimated based on the CDC estimate of annual cases and newly available data from the Foodborne Diseases Active Surveillance Network (FoodNet) of the CDC Emerging Infections Program. The annual cost of illness due to O157 STEC was $405 million (in 2003 dollars), including $370 million for premature deaths, $30 million for medical care, and $5 million in lost productivity. The average cost per case varied greatly by severity of illness, ranging from $26 for an individual who did not obtain medical care to $6.2 million for a patient who died from hemolytic uremic syndrome. The high cost of illness due to O157 STEC infections suggests that additional efforts to control this pathogen might be warranted.


2002 ◽  
Vol 82 (4) ◽  
pp. 475-490 ◽  
Author(s):  
S. J. Bach ◽  
T. A. McAllister ◽  
D. M. Veira ◽  
V. P. J. Gannon ◽  
R. A. Holley

Escherichia coli 157:H7 has evolved as an important foodborne pathogen since its initial description in 1982. Outbreaks of illness associated with E. coli O157:H7 have been reported throughout the northern hemisphere, most frequently in Canada, the United States, Japan, and the United Kingdom. In Canada, infections due to E. coli O157: H7 appear to be more common in the western provinces than in the east, in rural vs. urban environments, and during summer as opposed to winter months. Undercooked ground beef has been implicated as the primary vehicle in E. coli O157:H7 infection, but contaminated fruits, vegetables and water have also been linked to E. coli O157:H7 outbreaks. Epidemiological investigations demonstrate that dairy and beef cattle are primary reservoirs of this organism, carrying it asymptomatically and shedding it intermittently and seasonally in their feces. Surveys in Canada and the United States indicate widespread distribution of E. coli O157:H7 in cattle operations. The prevalence of E. coli O157:H7 in cattle has been increasing in recent reports, likely due to the development of more sensitive methods for the detection of the organism. Escherichia coli O157:H7 has been isolated from feed, water for livestock, manure, soil and flies, all of which represent potential sources of contamination for cattle and their environment. To date, effective methods for controlling E. coli O157:H7 in cattle have not been identified, although dietary manipulation, vaccination and bacteriophage therapy have been reported to have potential as intervention strategies. Effective control of E. coli O157:H7 requires reducing the frequency and intensity of fecal shedding of this pathogen by cattle, in addition to targeting environmental sources of the organism. Key words: Escherichia coli O157:H7, cattle, sources, diet, transmission


Author(s):  
Woube Y ◽  
Abdella E ◽  
Faraj R ◽  
Perry R ◽  
Reddy G ◽  
...  

Shiga toxin-producing Escherichia coli O157:H7 are bacterial pathogens that cause foodborne infections in humans. The objectives of this study were to find the pooled prevalence and concentration of Escherichia coli O157:H7 in cattle, hides, carcass, and the environment in the United States of America using meta-analysis. The PRISMA and MOOSE research protocols were employed in the methodology. Weighted effect size was calculated using MetaXL software. A total of 1737 publications were screened, out of which 53 were selected for the final analysis. The pooled prevalence in feedlot cattle was 10.96% (95% CI: 4.2-18.8%). In dairy cattle a pooled prevalence of 1.5% (95% CI: 0.11-3.5%) was observed. The prevalence between feedlot and dairy cattle was significantly different (p<0.05). The herd prevalence in combined feedlot and dairy cattle was 31.7% (95% CI: 10.2-55.5%). Hide and carcass samples’ pooled prevalences were 54.7% (95% CI: 41.7-67.5%) and 21.3% (95% CI: 9.7-34.2%), respectively. Prevalence of environmental samples was 8.1% for produce (95% CI: 0-29.6%), 4.6% for watershed and sediment samples (95% CI: 0-12.2%), and 2.4% for water taken from troughs (95% CI: 0.39-5.1%). Significant difference was observed in individual, herd, and environment prevalence between regions (χ2 =903.14, p=0.0000; χ2 =11.06, p=0.0039; χ2 =13.59, p=0.0004, respectively). E. coli O157:H7 concentrations were highest in feces (900- 300,000 cfu/g), followed by hides (5-9,800 cfu/100 square cm), and carcass (1-189 cfu/100 square cm). At least one supershedder exists in a herd. The findings in this study showed that Escherichia coli O157:H7 serotype is widespread in feedlots, herds, hides, and carcass in the United States of America necessitating appropriate measures to prevent human illnesses. Improving management programs in cattle herds, reduction of environmental contamination, and hygienic slaughter practices are targets of intervention.


1998 ◽  
Vol 177 (4) ◽  
pp. 962-966 ◽  
Author(s):  
L. Slutsker ◽  
A. A. Ries ◽  
K. Maloney ◽  
J. G. Wells ◽  
K. D. Greene ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document