scholarly journals Direct Bisulfite Sequencing for Examination of DNA Methylation with Gene and Nucleotide Resolution from Brain Tissues

Author(s):  
R. Ryley Parrish ◽  
Jeremy J. Day ◽  
Farah D. Lubin
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hirotaka Yamagata ◽  
Hiroyuki Ogihara ◽  
Koji Matsuo ◽  
Shusaku Uchida ◽  
Ayumi Kobayashi ◽  
...  

AbstractThe heterogeneity of major depressive disorder (MDD) is attributed to the fact that diagnostic criteria (e.g., DSM-5) are only based on clinical symptoms. The discovery of blood biomarkers has the potential to change the diagnosis of MDD. The purpose of this study was to identify blood biomarkers of DNA methylation by strategically subtyping patients with MDD by onset age. We analyzed genome-wide DNA methylation of patients with adult-onset depression (AOD; age ≥ 50 years, age at depression onset < 50 years; N = 10) and late-onset depression (LOD; age ≥ 50 years, age at depression onset ≥ 50 years; N = 25) in comparison to that of 30 healthy subjects. The methylation profile of the AOD group was not only different from that of the LOD group but also more homogenous. Six identified methylation CpG sites were validated by pyrosequencing and amplicon bisulfite sequencing as potential markers for AOD in a second set of independent patients with AOD and healthy control subjects (N = 11). The combination of three specific methylation markers achieved the highest accuracy (sensitivity, 64%; specificity, 91%; accuracy, 77%). Taken together, our findings suggest that DNA methylation markers are more suitable for AOD than for LOD patients.


PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e13020 ◽  
Author(s):  
Jeong-Hyeon Choi ◽  
Yajun Li ◽  
Juyuan Guo ◽  
Lirong Pei ◽  
Tibor A. Rauch ◽  
...  

2020 ◽  
Author(s):  
Benjamin I Laufer ◽  
Hyeyeon Hwang ◽  
Julia M Jianu ◽  
Charles E Mordaunt ◽  
Ian F Korf ◽  
...  

Abstract Neonatal dried blood spots (NDBS) are a widely banked sample source that enables retrospective investigation into early life molecular events. Here, we performed low-pass whole genome bisulfite sequencing (WGBS) of 86 NDBS DNA to examine early life Down syndrome (DS) DNA methylation profiles. DS represents an example of genetics shaping epigenetics, as multiple array-based studies have demonstrated that trisomy 21 is characterized by genome-wide alterations to DNA methylation. By assaying over 24 million CpG sites, thousands of genome-wide significant (q &lt; 0.05) differentially methylated regions (DMRs) that distinguished DS from typical development and idiopathic developmental delay were identified. Machine learning feature selection refined these DMRs to 22 loci. The DS DMRs mapped to genes involved in neurodevelopment, metabolism, and transcriptional regulation. Based on comparisons with previous DS methylation studies and reference epigenomes, the hypermethylated DS DMRs were significantly (q &lt; 0.05) enriched across tissues while the hypomethylated DS DMRs were significantly (q &lt; 0.05) enriched for blood-specific chromatin states. A ~28 kb block of hypermethylation was observed on chromosome 21 in the RUNX1 locus, which encodes a hematopoietic transcription factor whose binding motif was the most significantly enriched (q &lt; 0.05) overall and specifically within the hypomethylated DMRs. Finally, we also identified DMRs that distinguished DS NDBS based on the presence or absence of congenital heart disease (CHD). Together, these results not only demonstrate the utility of low-pass WGBS on NDBS samples for epigenome-wide association studies, but also provide new insights into the early life mechanisms of epigenomic dysregulation resulting from trisomy 21.


Author(s):  
Dan Sun ◽  
Thomas S. Layman ◽  
Hyeonsoo Jeong ◽  
Paramita Chatterjee ◽  
Kathleen Grogan ◽  
...  

ABSTRACTDNA methylation is known to play critical roles in key biological processes. Most of our knowledge on regulatory impacts of DNA methylation has come from laboratory-bred model organisms, which may not exhibit the full extent of variation found in wild populations. Here, we investigated naturally-occurring variation in DNA methylation in a wild avian species, the white-throated sparrow (Zonotrichia albicollis). This species offers exceptional opportunities for studying the link between genetic differentiation and phenotypic traits because of a non-recombining chromosome pair linked to both plumage and behavioral phenotypes. Using novel single-nucleotide resolution methylation maps and gene expression data, we show that DNA methylation and the expression of DNA methyltransferases are significantly higher in adults than in nestlings. Genes for which DNA methylation varied between nestlings and adults were implicated in development and cell differentiation and were located throughout the genome. In contrast, differential methylation between plumage morphs was localized to the non-recombining chromosome pair. One subset of CpGs on the non-recombining chromosome was extremely hypomethylated and localized to transposable elements. Changes in methylation predicted changes in gene expression for both chromosomes. In summary, we demonstrate changes in genome-wide DNA methylation that are associated with development and with specific functional categories of genes in white-throated sparrows. Moreover, we observe substantial DNA methylation reprogramming associated with the suppression of recombination, with implications for genome integrity and gene expression divergence. These results offer an unprecedented view of ongoing epigenetic reprogramming in a wild population.


2021 ◽  
Author(s):  
Sara Gombert ◽  
Kirsten Jahn ◽  
Hansi Pathak ◽  
Alexandra Burkert ◽  
Gunnar Schmidt ◽  
...  

Bisulfite sequencing has long been considered the gold standard for measurement of DNA methylation at single CpG resolution. In the meantime, several new approaches have been developed, which are regarded as less error-prone. Since these errors were shown to be sequence-specific, we aimed to verify the methylation data of a particular region of the TRPA1 promoter obtained from our previous studies. For this purpose, we compared methylation rates obtained via direct bisulfite sequencing and nanopore sequencing. Thus, we were able to confirm our previous findings to a large extent.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aniruddha Chatterjee ◽  
Euan J. Rodger ◽  
Peter A. Stockwell ◽  
Robert J. Weeks ◽  
Ian M. Morison

Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background.


Sign in / Sign up

Export Citation Format

Share Document