Non‐Foster Impedance Matching

Author(s):  
Ting‐Yen Shih ◽  
Nader Behdad
Keyword(s):  
Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2921 ◽  
Author(s):  
Wei Huang ◽  
Yujiang Wang ◽  
Shicheng Wei ◽  
Bo Wang ◽  
Yi Liang ◽  
...  

Hollow magnetic structures have great potential to be used in the microwave absorbing field. Herein, Fe3O4 hollow spheres with different levels of hollowness were synthesized by the hydrothermal method under Ostwald ripening effect. In addition to their microstructures, the microwave absorption properties of such spheres were investigated. The results show that the grain size and hollowness of Fe3O4 hollow spheres both increase as the reaction time increases. With increasing hollowness, the attenuation ability of electromagnetic wave of Fe3O4 spheres increases first and then decreases, finally increases sharply after the spheres break down. Samples with strong attenuation ability can achieve good impedance matching, which it does preferentially as the absorber thickness increases. Fe3O4 hollow spheres show the best microwave absorption performance when the reaction time is 24 h. The minimum reflection loss (RL (min)) can reach −40 dB, while the thickness is only 3.2 mm.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 191-199
Author(s):  
M. K. Verma ◽  
Binod K. Kanaujia ◽  
J. P. Saini ◽  
Padam S. Saini

AbstractA broadband circularly polarized slotted square patch antenna with horizontal meandered strip (HMS) is presented and studied. The HMS feeding technique provides the good impedance matching and broadside symmetrical radiation patterns. A set of cross asymmetrical slots are etched on the radiating patch to realize the circular polarization. An electrically small stub is added on the edge of the antenna for further improvement in performance. Measured 10-dB impedance bandwidth (IBW) and 3-dB axial ratio bandwidth (ARBW) of the proposed antenna are 32.31 % (3.14–4.35 GHz) and 20.91 % (3.34–4.12 GHz), respectively. The gain of the antenna is varied from 3.5 to 4.86dBi within 3-dB ARBW. Measured results matched well with the simulated results.


2019 ◽  
Vol 77 ◽  
pp. 115-123 ◽  
Author(s):  
Yang Yang ◽  
Lianghao Guo ◽  
Qing Zhou ◽  
Zhe Wu ◽  
Haibo Jiang ◽  
...  

2021 ◽  
pp. 2100310
Author(s):  
Sainan Liu ◽  
Guotao Yuan ◽  
Yi Zhang ◽  
Lingjie Xie ◽  
Qingqing Shen ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2702
Author(s):  
Xiaojun Zhao ◽  
Xiuhui Chai ◽  
Xiaoqiang Guo ◽  
Ahmad Waseem ◽  
Xiaohuan Wang ◽  
...  

Different from the extant power flow analysis methods, this paper discusses the power flows for the unified power quality conditioner (UPQC) in three-phase four-wire systems from the point of view of impedance matching. To this end, combined with the designed control strategies, the establishing method of the UPQC impedance model is presented, and on this basis, the UPQC system can be equivalent to an adjustable impedance model. After that, a concept of impedance matching is introduced into this impedance model to study the operation principle for the UPQC system, i.e., how the system changes its operation states and power flow under the grid voltage variations through discussing the matching relationships among node impedances. In this way, the nodes of the series and parallel converter are matched into two sets of impedances in opposite directions, which mean that one converter operates in rectifier state to draw the energy and the other one operates in inverter state to transmit the energy. Consequently, no matter what grid voltages change, the system node impedances are dynamically matched to ensure that output equivalent impedances are always equal to load impedances, so as to realize impedance and power balances of the UPQC system. Finally, the correctness of the impedance matching-based power flow analysis is validated by the experimental results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Leyre Azpilicueta ◽  
Chan H. See ◽  
Raed Abd-Alhameed ◽  
...  

AbstractMatching the antenna’s impedance to the RF-front-end of a wireless communications system is challenging as the impedance varies with its surround environment. Autonomously matching the antenna to the RF-front-end is therefore essential to optimize power transfer and thereby maintain the antenna’s radiation efficiency. This paper presents a theoretical technique for automatically tuning an LC impedance matching network that compensates antenna mismatch presented to the RF-front-end. The proposed technique converges to a matching point without the need of complex mathematical modelling of the system comprising of non-linear control elements. Digital circuitry is used to implement the required matching circuit. Reliable convergence is achieved within the tuning range of the LC-network using control-loops that can independently control the LC impedance. An algorithm based on the proposed technique was used to verify its effectiveness with various antenna loads. Mismatch error of the technique is less than 0.2%. The technique enables speedy convergence (< 5 µs) and is highly accurate for autonomous adaptive antenna matching networks.


Sign in / Sign up

Export Citation Format

Share Document