Assessing WRF model parameter sensitivity: A case study with 5 day summer precipitation forecasting in the Greater Beijing Area

2015 ◽  
Vol 42 (2) ◽  
pp. 579-587 ◽  
Author(s):  
Zhenhua Di ◽  
Qingyun Duan ◽  
Wei Gong ◽  
Chen Wang ◽  
Yanjun Gan ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 873
Author(s):  
Yakob Umer ◽  
Janneke Ettema ◽  
Victor Jetten ◽  
Gert-Jan Steeneveld ◽  
Reinder Ronda

Simulating high-intensity rainfall events that trigger local floods using a Numerical Weather Prediction model is challenging as rain-bearing systems are highly complex and localized. In this study, we analyze the performance of the Weather Research and Forecasting (WRF) model’s capability in simulating a high-intensity rainfall event using a variety of parameterization combinations over the Kampala catchment, Uganda. The study uses the high-intensity rainfall event that caused the local flood hazard on 25 June 2012 as a case study. The model capability to simulate the high-intensity rainfall event is performed for 24 simulations with a different combination of eight microphysics (MP), four cumulus (CP), and three planetary boundary layer (PBL) schemes. The model results are evaluated in terms of the total 24-h rainfall amount and its temporal and spatial distributions over the Kampala catchment using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) analysis. Rainfall observations from two gauging stations and the CHIRPS satellite product served as benchmark. Based on the TOPSIS analysis, we find that the most successful combination consists of complex microphysics such as the Morrison 2-moment scheme combined with Grell-Freitas (GF) and ACM2 PBL with a good TOPSIS score. However, the WRF performance to simulate a high-intensity rainfall event that has triggered the local flood in parts of the catchment seems weak (i.e., 0.5, where the ideal score is 1). Although there is high spatial variability of the event with the high-intensity rainfall event triggering the localized floods simulated only in a few pockets of the catchment, it is remarkable to see that WRF is capable of producing this kind of event in the neighborhood of Kampala. This study confirms that the capability of the WRF model in producing high-intensity tropical rain events depends on the proper choice of parametrization combinations.


2016 ◽  
Vol 20 (10) ◽  
pp. 4129-4142 ◽  
Author(s):  
Emma Daniels ◽  
Geert Lenderink ◽  
Ronald Hutjes ◽  
Albert Holtslag

Abstract. The effects of historic and future land use on precipitation in the Netherlands are investigated on 18 summer days with similar meteorological conditions. The days are selected with a circulation type classification and a clustering procedure to obtain a homogenous set of days that is expected to favor land impacts. Changes in precipitation are investigated in relation to the present-day climate and land use, and from the perspective of future climate and land use. To that end, the weather research and forecasting (WRF) model is used with land use maps for 1900, 2000, and 2040. In addition, a temperature perturbation of +1 °C assuming constant relative humidity is imposed as a surrogate climate change scenario. Decreases in precipitation of, respectively, 3–5 and 2–5 % are simulated following conversion of historic to present, and present to future, land use. The temperature perturbation under present land use conditions increases precipitation amounts by on average 7–8 % and amplifies precipitation intensity. However, when also considering future land use, the increase is reduced to 2–6 % on average, and no intensification of extreme precipitation is simulated. In all, the simulated effects of land use changes on precipitation in summer are smaller than the effects of climate change, but are not negligible.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 141
Author(s):  
Yan Yang ◽  
Wei Zhou ◽  
Qian Gao ◽  
Delong Zhao ◽  
Xiange Liu ◽  
...  

Many studies have shown that air pollutants have complex impacts on urban precipitation. Meteorological weather station and satellite Aerosol Optical Depth (AOD) product data from the last 20 years, combined with simulation results from the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), this paper focuses on the effects of air pollutants on summer precipitation in different regions of Beijing. These results showed that air pollution intensity during the summer affected the precipitation contribution rate (PCR) of plains and mountainous regions in the Beijing area, especially in the plains. Over the past 20 years, plains PCR increased by ~10% when the AOD augmented by 0.15, whereas it decreased with lower pollution levels. In contrast, PCR in mountainous areas decreased with higher pollution levels and increased with lower pollution levels. Our analysis from model results indicated that aerosol increases reduce the effective particle size of cloud droplets and raindrops. Smaller cloud raindrops more readily transport to high air layers and participate in the generation of ice-phase substances in the clouds, increasing the total amount of cloud water in the air in a certain time, which ultimately enhanced precipitation intensity on the plains. The removal of pollutants caused by increased precipitation in the plains decreased rainfall levels in mountainous areas.


2013 ◽  
Vol 8 (No. 4) ◽  
pp. 186-194
Author(s):  
M. Heřmanovský ◽  
P. Pech

This paper demonstrates an application of the previously published method for selection of optimal catchment descriptors, according to which similar catchments can be identified for the purpose of estimation of the Sacramento – Soil Moisture Accounting (SAC-SMA) model parameters for a set of tested catchments, based on the physical similarity approach. For the purpose of the analysis, the following data from the Model Parameter Estimation Experiment (MOPEX) project were taken: a priori model parameter sets used as reference values for comparison with the newly estimated parameters, and catchment descriptors of four categories (climatic descriptors, soil properties, land cover and catchment morphology). The inverse clustering method, with Andrews’ curves for a homogeneity check, was used for the catchment grouping process. The optimal catchment descriptors were selected on the basis of two criteria, one comparing different subsets of catchment descriptors of the same size (MIN), the other one evaluating the improvement after addition of another catchment descriptor (MAX). The results suggest that the proposed method and the two criteria used may lead to the selection of a subset of conditionally optimal catchment descriptors from a broader set of them. As expected, the quality of the resulting subset of optimal catchment descriptors is mainly dependent on the number and type of the descriptors in the broader set. In the presented case study, six to seven catchment descriptors (two climatic, two soil and at least two land-cover descriptors) were identified as optimal for regionalisation of the SAC-SMA model parameters for a set of MOPEX catchments.


Sign in / Sign up

Export Citation Format

Share Document