scholarly journals The response of local power grid at low-latitude to geomagnetic storm: An application of the Hilbert Huang transform

Space Weather ◽  
2016 ◽  
Vol 14 (4) ◽  
pp. 300-312 ◽  
Author(s):  
Jin Liu ◽  
Chuan-Bing Wang ◽  
Lu Liu ◽  
Wei-Huai Sun
2016 ◽  
Vol 121 (4) ◽  
pp. 3421-3438 ◽  
Author(s):  
B. Nava ◽  
J. Rodríguez‐Zuluaga ◽  
K. Alazo‐Cuartas ◽  
A. Kashcheyev ◽  
Y. Migoya‐Orué ◽  
...  

2004 ◽  
Vol 22 (9) ◽  
pp. 3221-3229 ◽  
Author(s):  
Y. Sahai ◽  
P. R. Fagundes ◽  
F. Becker-Guedes ◽  
J. R. Abalde ◽  
G. Crowley ◽  
...  

Abstract. A new ionospheric sounding station using a Canadian Advanced Digital Ionosonde (CADI) was established for routine measurements by the "Universidade do Vale do Paraiba (UNIVAP)" at São José dos Campos (23.2° S, 45.9° W), Brazil, in August 2000. A major geomagnetic storm with gradual commencement at about 01:00 UT was observed on 31 March 2001. In this paper, we present and discuss salient features from the ionospheric sounding measurements carried out at S. J. Campos on the three consecutive UT days 30 March (quiet), 31 March (disturbed) and 1 April (recovery) 2001. During most of the storm period, the foF2 values showed negative phase, whereas during the two storm-time peaks, large F-region height variations were observed. In order to study the longitudinal differences observed in the F-region during the storm, the simultaneous ionospheric sounding measurements carried out at S. J. Campos, El Arenosillo (37.1° N, 6.7° W), Spain, Okinawa (26.3° N, 127.8° E), Japan and Wakkanai (45.5° N, 141.7° E), Japan, during the period 30 March-1 April 2001, have been analyzed. A comparison of the observed ionospheric parameters (h'F and foF2) in the two longitudinal zones (1. Japanese and 2. Brazilian-Spanish) shows both similarities and differences associated with the geomagnetic disturbances. Some latitudinal differences are also observed in the two longitudinal zones. In addition, global ionospheric TEC maps from the worldwide network of GPS receivers are presented, showing widespread TEC changes during both the main and recovery phases of the storm. The ionospheric sounding measurements are compared with the ASPEN-TIMEGCM model runs appropriate for the storm conditions. The model results produce better agreement during the quiet period. During the disturbed period, some of the observed F-region height variations are well reproduced by the model results. The model foF2 and TEC results differ considerably during the recovery period and indicate much stronger negative phase at all the stations, particularly at the low-latitude ones.


2020 ◽  
Vol 365 (12) ◽  
Author(s):  
A. Vishnu Vardhan ◽  
P. Babu Sree Harsha ◽  
D. Venkata Ratnam ◽  
A. K. Upadhayaya

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 962 ◽  
Author(s):  
Wangyi Mo ◽  
Chao Yang ◽  
Xin Chen ◽  
Kangjie Lin ◽  
Shuaiqi Duan

Electric vehicles (EVs) have become an efficient solution to making a transportation system environmentally friendly. However, as the number of EVs grows, the power demand from charging vehicles increases greatly. An unordered charging strategy for huge EVs affects the stability of a local power grid, especially during peak times. It becomes serious under the rapid charging mode, in which the EVs will be charged fully within a shorter time. In contrast to regular charging, the power quality (e.g.,voltages deviation, harmonic distortion) is affected when multiple EVs perform rapid charging at the same station simultaneously. To reduce the impacts on a power grid system caused by rapid charging, we propose an optimal EV rapid charging navigation strategy based on the internet of things network. The rapid charging price is designed based on the charging power regulation scheme. Both power grid operation and real-time traffic information are considered. The formulated objective of the navigation strategy is proposed to minimize the synthetic costs of EVs, including the traveling time and the charging costs. Simulation results demonstrate the effectiveness of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document