scholarly journals On the relation of earthquake stress drop and ground motion variability

2017 ◽  
Vol 122 (7) ◽  
pp. 5474-5492 ◽  
Author(s):  
Adrien Oth ◽  
Hiroe Miyake ◽  
Dino Bindi
Author(s):  
Dino Bindi ◽  
Riccardo Zaccarelli ◽  
Sreeram Reddy Kotha

ABSTRACT We investigate the dependence of event-specific ground-motion residuals in the Ridgecrest region, California. We focus on the impact of using either local (ML) or moment (Mw) magnitude, for describing the source scaling of a regional ground-motion model. To analyze homogeneous Mw, we compute the source spectra of about 2000 earthquakes in the magnitude range 2.5–7.1, by performing a nonparametric spectral decomposition. Seismic moments and corner frequencies are derived from the best-fit ω−2 source models, and stress drop is computed assuming standard circular rupture model. The Brune stress drop varies between 0.62 and 24.63 MPa (with median equal to 3.0 MPa), and values for Mw>5 are mostly distributed above the 90th percentile. The median scaled energy for Mw<5 is −4.57, and the low values obtained for the Mw 6.4 and 7.1 mainshocks (−5 and −5.2, respectively) agree with previous studies. We calibrate an ad hoc nonparametric ML scale for the Ridgecrest region. The main differences with the standard ML scale for California are observed at distances between 30 and 100 km, in which differences up to 0.4 magnitude units are obtained. Finally, we calibrate ground-motion models for the Fourier amplitude spectra, considering the ML and Mw scales derived in this study and the magnitudes extracted from Comprehensive Earthquake Catalog. The analysis of the residuals shows that ML better describes the interevent variability above 2 Hz. At intermediate frequencies (between about 3 and 8 Hz), the interevent residuals for the model based on Mw show a correlation with stress drop: this correlation disappears, when ML is used. The choice of the magnitude scale has an impact also on the statistical uncertainty of the median model: for any fixed magnitude value, the epistemic uncertainty is larger for ML below 1.5 Hz and larger for Mw above 1.5 Hz.


2021 ◽  
Author(s):  
Jagdish Chandra Vyas ◽  
Martin Galis ◽  
Paul Martin Mai

<p>Geological observations show variations in fault-surface topography not only at large scale (segmentation) but also at small scale (roughness). These geometrical complexities strongly affect the stress distribution and frictional strength of the fault, and therefore control the earthquake rupture process and resulting ground-shaking. Previous studies examined fault-segmentation effects on ground-shaking, but our understanding of fault-roughness effects on seismic wavefield radiation and earthquake ground-motion is still limited.  </p><p>In this study we examine the effects of fault roughness on ground-shaking variability as a function of distance based on 3D dynamic rupture simulations. We consider linear slip-weakening friction, variations of fault-roughness parametrizations, and alternative nucleation positions (unilateral and bilateral ruptures). We use generalized finite difference method to compute synthetic waveforms (max. resolved frequency 5.75 Hz) at numerous surface sites  to carry out statistical analysis.  </p><p>Our simulations reveal that ground-motion variability from unilateral ruptures is almost independent of  distance from the fault, with comparable or higher values than estimates from ground-motion prediction equations (e.g., Boore and Atkinson, 2008; Campbell and Bozornia, 2008). However, ground-motion variability from bilateral ruptures decreases with increasing distance, in contrast to previous studies (e.g., Imtiaz et. al., 2015) who observe an increasing trend with distance. Ground-shaking variability from unilateral ruptures is higher than for bilateral ruptures, a feature due to intricate seismic radiation patterns related to fault roughness and hypocenter location. Moreover, ground-shaking variability for rougher faults is lower than for smoother faults. As fault roughness increases the difference in ground-shaking variabilities between unilateral and bilateral ruptures increases. In summary, our simulations help develop a fundamental understanding of ground-motion variability at high frequencies (~ 6 Hz) due small-scale geometrical fault-surface variations.</p>


Author(s):  
Percy Galvez ◽  
Anatoly Petukhin ◽  
Paul Somerville ◽  
Jean-Paul Ampuero ◽  
Ken Miyakoshi ◽  
...  

ABSTRACT Realistic dynamic rupture modeling validated by observed earthquakes is necessary for estimating parameters that are poorly resolved by seismic source inversion, such as stress drop, rupture velocity, and slip rate function. Source inversions using forward dynamic modeling are increasingly used to obtain earthquake rupture models. In this study, to generate a large number of physically self-consistent rupture models, rupture process of which is consistent with the spatiotemporal heterogeneity of stress produced by previous earthquakes on the same fault, we use multicycle simulations under the rate and state (RS) friction law. We adopt a one-way coupling from multicycle simulations to dynamic rupture simulations; the quasidynamic solver QDYN is used to nucleate the seismic events and the spectral element dynamic solver SPECFEM3D to resolve their rupture process. To simulate realistic seismicity, with a wide range of magnitudes and irregular recurrence, several realizations of 2D-correlated heterogeneous random distributions of characteristic weakening distance (Dc) in RS friction are tested. Other important parameters are the normal stress, which controls the stress drop and rupture velocity during an earthquake, and the maximum value of Dc, which controls rupture velocity but not stress drop. We perform a parametric study on a vertical planar fault and generate a set of a hundred spontaneous rupture models in a wide magnitude range (Mw 5.5–7.4). We validate the rupture models by comparison of source scaling, ground motion (GM), and surface slip properties to observations. We compare the source-scaling relations between rupture area, average slip, and seismic moment of the modeled events with empirical ones derived from source inversions. Near-fault GMs are computed from the source models. Their peak ground velocities and peak ground accelerations agree well with the ground-motion prediction equation values. We also obtain good agreement of the surface fault displacements with observed values.


2021 ◽  
Author(s):  
Olga-Joan Ktenidou ◽  
Faidra Gkika ◽  
Erion-Vasilis Pikoulis ◽  
Christos Evangelidis

<p>Although it is nowadays desirable and even typical to characterise site conditions in detail at modern recording stations, this is not yet a general rule in Greece, due to the large number and geographical dispersion of stations. Indeed, most of them are still characterised merely through geological descriptions or proxy-based parameters, rather than through in-situ measurements. Considering: 1. the progress made in recent years with sophisticated ground motion models and the need to define region-specific rock conditions based on data, 2. the move towards large open-access strong-motion databases that require detailed site metadata, and 3. that Greek-provenance recordings represent a significant portion of European seismic data, there are many reasons to improve our understanding of site response at these stations. Moreover, it has been shown recently in several regions that even sites considered as rock can exhibit amplification and ground motion variability, which has given rise to more scientific research into the definition of reference sites. For Greece, in-situ-characterisation campaigns for the entire network would impose unattainable time/budget constraints; so, instead, we implement alternative empirical approaches using the recordings themselves, such as the horizontal-to-vertical spectral ratio technique and its variability. We present examples of 'well-behaved', typical rock sites, and others whose response diverges from what is assumed for their class.</p><p> </p>


2020 ◽  
Vol 110 (1) ◽  
pp. 345-356 ◽  
Author(s):  
Itzhak Lior ◽  
Alon Ziv

ABSTRACT Currently available earthquake early warning systems employ region-specific empirical relations for magnitude determination and ground-motion prediction. Consequently, the setting up of such systems requires lengthy calibration and parameter tuning. This situation is most problematic in low seismicity and/or poorly instrumented regions, where the data available for inferring those empirical relations are scarce. To address this issue, a generic approach for real-time magnitude, stress drop, and ground-motion prediction is introduced that is based on the omega-squared model. This approach leads to the following approximate expressions for seismic moment: M0∝RT0.5Drms1.5/Vrms0.5, and stress drop: Δτ∝RT0.5Arms3/Vrms2, in which R is the hypocentral distance; T is the data interval; and Drms, Vrms, and Arms are the displacement, velocity, and acceleration root mean squares, respectively, which may be calculated in the time domain. The potential of these relations for early warning applications is demonstrated using a large composite data set that includes the two 2019 Ridgecrest earthquakes. A quality parameter is introduced that identifies inconsistent earthquake magnitude and stress-drop estimates. Once initial estimates of the seismic moment and stress drop become available, the peak ground velocity and acceleration may be estimated in real time using the generic ground-motion prediction equation of Lior and Ziv (2018). The use of stress drop for ground-motion prediction is shown to be critical for strong ground accelerations. The main advantages of the generic approach with respect to the empirical approach are that it is readily implementable in any seismic region, allows for the easy update of magnitude, stress drop, and shaking intensity with time, and uses source parameter determination and peak ground motion predictions that are subject to the same model assumptions, thus constituting a self-consistent early warning method.


Sign in / Sign up

Export Citation Format

Share Document