scholarly journals Are stress drop and rupture velocity of earthquakes independent? Insight from observed ground motion variability

2015 ◽  
Vol 42 (18) ◽  
pp. 7383-7389 ◽  
Author(s):  
Mathieu Causse ◽  
Seok Goo Song
Author(s):  
Percy Galvez ◽  
Anatoly Petukhin ◽  
Paul Somerville ◽  
Jean-Paul Ampuero ◽  
Ken Miyakoshi ◽  
...  

ABSTRACT Realistic dynamic rupture modeling validated by observed earthquakes is necessary for estimating parameters that are poorly resolved by seismic source inversion, such as stress drop, rupture velocity, and slip rate function. Source inversions using forward dynamic modeling are increasingly used to obtain earthquake rupture models. In this study, to generate a large number of physically self-consistent rupture models, rupture process of which is consistent with the spatiotemporal heterogeneity of stress produced by previous earthquakes on the same fault, we use multicycle simulations under the rate and state (RS) friction law. We adopt a one-way coupling from multicycle simulations to dynamic rupture simulations; the quasidynamic solver QDYN is used to nucleate the seismic events and the spectral element dynamic solver SPECFEM3D to resolve their rupture process. To simulate realistic seismicity, with a wide range of magnitudes and irregular recurrence, several realizations of 2D-correlated heterogeneous random distributions of characteristic weakening distance (Dc) in RS friction are tested. Other important parameters are the normal stress, which controls the stress drop and rupture velocity during an earthquake, and the maximum value of Dc, which controls rupture velocity but not stress drop. We perform a parametric study on a vertical planar fault and generate a set of a hundred spontaneous rupture models in a wide magnitude range (Mw 5.5–7.4). We validate the rupture models by comparison of source scaling, ground motion (GM), and surface slip properties to observations. We compare the source-scaling relations between rupture area, average slip, and seismic moment of the modeled events with empirical ones derived from source inversions. Near-fault GMs are computed from the source models. Their peak ground velocities and peak ground accelerations agree well with the ground-motion prediction equation values. We also obtain good agreement of the surface fault displacements with observed values.


2021 ◽  
Author(s):  
Jayalakshmi Sivasubramonian ◽  
Paul Martin Mai

<p>We analyze the effect of earthquake source parameters on ground-motion variability based on near-field wavefield simulations for large earthquakes. We quantify residuals in simulated ground motion intensities with respect to observed records, the associated variabilities are then quantified with respect to source-to-site distance and azimuth. Additionally, we compute the variabilities due to complexities in rupture models by considering variations in hypocenter location and slip distribution that are implemented a new Pseudo-Dynamic (PD) source parameterization.</p><p>In this study, we consider two past events – the Mw 6.9 Iwate Miyagi Earthquake (2008), Japan, and the Mw 6.5 Imperial Valley Earthquake, California (1979). Assuming for each case a 1D velocity structure, we first generate ensembles of rupture models using the pseudo-dynamic approach of Guatteri et.al (2004), by assuming different hypocenter and asperities locations (Mai and Beroza, 2002, Mai et al., 2005; Thingbaijam and Mai, 2016). In order to efficiently include variations in high-frequency radiation, we adopt a PD parameterization for rupture velocity and rise time distribution in our rupture model generator. Overall, we generate a database of rupture models with 50 scenarios for each source parameterization. Synthetic near-field waveforms (0.1-2.5Hz) are computed out to Joyner-Boore distances Rjb ~ 150km using a discrete-wavenumber finite-element method (Olson et al., 1984). Our results show that ground-motion variability is most sensitive to hypocenter locations on the fault plane. We also find that locations of asperities do not alter waveforms significantly for a given hypocenter, rupture velocity and rise time distribution. We compare the scenario-event simulated ground motions with simulations that use the rupture models from the SRCMOD database (Mai and Thingbaijam, 2014), and find that the PD method is capable of reducing the ground motion variability at high frequencies. The PD models are calibrated by comparing the mean residuals with the residuals from SRCMOD models. We present the variability due to each source parameterization as a function of Joyner-Boore distance and azimuth at different natural period.</p>


Author(s):  
Dino Bindi ◽  
Riccardo Zaccarelli ◽  
Sreeram Reddy Kotha

ABSTRACT We investigate the dependence of event-specific ground-motion residuals in the Ridgecrest region, California. We focus on the impact of using either local (ML) or moment (Mw) magnitude, for describing the source scaling of a regional ground-motion model. To analyze homogeneous Mw, we compute the source spectra of about 2000 earthquakes in the magnitude range 2.5–7.1, by performing a nonparametric spectral decomposition. Seismic moments and corner frequencies are derived from the best-fit ω−2 source models, and stress drop is computed assuming standard circular rupture model. The Brune stress drop varies between 0.62 and 24.63 MPa (with median equal to 3.0 MPa), and values for Mw>5 are mostly distributed above the 90th percentile. The median scaled energy for Mw<5 is −4.57, and the low values obtained for the Mw 6.4 and 7.1 mainshocks (−5 and −5.2, respectively) agree with previous studies. We calibrate an ad hoc nonparametric ML scale for the Ridgecrest region. The main differences with the standard ML scale for California are observed at distances between 30 and 100 km, in which differences up to 0.4 magnitude units are obtained. Finally, we calibrate ground-motion models for the Fourier amplitude spectra, considering the ML and Mw scales derived in this study and the magnitudes extracted from Comprehensive Earthquake Catalog. The analysis of the residuals shows that ML better describes the interevent variability above 2 Hz. At intermediate frequencies (between about 3 and 8 Hz), the interevent residuals for the model based on Mw show a correlation with stress drop: this correlation disappears, when ML is used. The choice of the magnitude scale has an impact also on the statistical uncertainty of the median model: for any fixed magnitude value, the epistemic uncertainty is larger for ML below 1.5 Hz and larger for Mw above 1.5 Hz.


1998 ◽  
Vol 88 (6) ◽  
pp. 1445-1456
Author(s):  
Tomohiro Inoue ◽  
Takashi Miyatake

Abstract We simulate the strong ground motion generated from the earthquake rupture process on a shallow strike-slip fault using a 3D finite-difference method. The faulting process is modeled using a crack model with fixed rupture velocity. The variability of peak ground velocity patterns, correlated with fault location and source parameters such as stress drop or rupture velocity, is investigated. Our findings suggest that these patterns are strongly affected by rupture directivity and the uppermost depth of the fault or that of the asperity. When a fault breaks the ground surface, the peak ground velocity and the peak ground acceleration show a narrow region of strong motion. When a fault is buried under the ground, the high peak ground velocity zone of the fault-parallel component is apart from the fault trace by a distance comparable to the fault depth. On the other hand, the fault-normal peak ground velocity is a maximum along the fault trace. The fault length (or asperity length) is not so effective for peak ground velocities. The effect of heterogeneity in stress drop and rupture velocity on strong ground motion is also investigated. When stress drop is not uniform but increases linearly with depth from zero at the uppermost depth, the peak ground velocity is reduced. These results help better predict the strong ground motion generated from a potential fault.


2017 ◽  
Vol 122 (7) ◽  
pp. 5474-5492 ◽  
Author(s):  
Adrien Oth ◽  
Hiroe Miyake ◽  
Dino Bindi

2021 ◽  
Author(s):  
Jagdish Chandra Vyas ◽  
Martin Galis ◽  
Paul Martin Mai

<p>Geological observations show variations in fault-surface topography not only at large scale (segmentation) but also at small scale (roughness). These geometrical complexities strongly affect the stress distribution and frictional strength of the fault, and therefore control the earthquake rupture process and resulting ground-shaking. Previous studies examined fault-segmentation effects on ground-shaking, but our understanding of fault-roughness effects on seismic wavefield radiation and earthquake ground-motion is still limited.  </p><p>In this study we examine the effects of fault roughness on ground-shaking variability as a function of distance based on 3D dynamic rupture simulations. We consider linear slip-weakening friction, variations of fault-roughness parametrizations, and alternative nucleation positions (unilateral and bilateral ruptures). We use generalized finite difference method to compute synthetic waveforms (max. resolved frequency 5.75 Hz) at numerous surface sites  to carry out statistical analysis.  </p><p>Our simulations reveal that ground-motion variability from unilateral ruptures is almost independent of  distance from the fault, with comparable or higher values than estimates from ground-motion prediction equations (e.g., Boore and Atkinson, 2008; Campbell and Bozornia, 2008). However, ground-motion variability from bilateral ruptures decreases with increasing distance, in contrast to previous studies (e.g., Imtiaz et. al., 2015) who observe an increasing trend with distance. Ground-shaking variability from unilateral ruptures is higher than for bilateral ruptures, a feature due to intricate seismic radiation patterns related to fault roughness and hypocenter location. Moreover, ground-shaking variability for rougher faults is lower than for smoother faults. As fault roughness increases the difference in ground-shaking variabilities between unilateral and bilateral ruptures increases. In summary, our simulations help develop a fundamental understanding of ground-motion variability at high frequencies (~ 6 Hz) due small-scale geometrical fault-surface variations.</p>


1982 ◽  
Vol 72 (4) ◽  
pp. 1049-1068
Author(s):  
John Boatwright

abstract A model for the far-field acceleration radiated by an incoherent rupture is constructed by combining Madariaga's (1977) theory for the high-frequency radiation from crack models of faulting with a simple statistical source model. By extending Madariaga's results to acceleration pulses with finite durations, the peak acceleration of a pulse radiated by a single stop or start of a crack tip is shown to depend on the dynamic stress drop of the subevent, the total change in rupture velocity, and the ratio of the subevent radius to the acceleration pulse width. An incoherent rupture is approximated by a sample from a self-similar distribution of coherent subevents. Assuming the subevents fit together without overlapping, the high-frequency level of the acceleration spectra depends linearly on the rms dynamic stress drop, the average change in rupture velocity, and the square root of the overall rupture area. The high-frequency level is independent, to first order, of the rupture complexity. Following Hanks (1979), simple approximations are derived for the relation between the rms dynamic stress drop and the rms acceleration, averaged over the pulse duration. This relation necessarily depends on the shape of the body-wave spectra. The body waves radiated by 10 small earthquakes near Monticello Dam, South Carolina, are analyzed to test these results. The average change of rupture velocity of Δv = 0.8β associated with the radiation of the acceleration pulses is estimated by comparing the rms acceleration contained in the P waves to that in the S waves. The rms dynamic stress drops of the 10 events, estimated from the rms accelerations, range from 0.4 to 1.9 bars and are strongly correlated with estimates of the apparent stress.


Author(s):  
Chen Ji ◽  
Ralph J. Archuleta

Abstract We investigate the relation between the kinematic double-corner-frequency source spectral model JA19_2S (Ji and Archuleta, 2020) and static fault geometry scaling relations proposed by Leonard (2010). We find that the nonself-similar low-corner-frequency scaling relation of JA19_2S model can be explained using the fault length scaling relation of Leonard’s model combined with an average rupture velocity ∼70% of shear-wave speed for earthquakes 5.3 < M< 6.9. Earthquakes consistent with both models have magnitude-independent average static stress drop and average dynamic stress drop around 3 MPa. Their scaled energy e˜ is not a constant. The decrease of e˜ with magnitude can be fully explained by the magnitude dependence of the fault aspect ratio. The high-frequency source radiation is generally controlled by seismic moment, static stress drop, and dynamic stress drop but is further modulated by the fault aspect ratio and the relative location of the hypocenter. Based on these two models, the commonly quoted average rupture velocity of 70%–80% of shear-wave speed implies predominantly unilateral rupture.


Sign in / Sign up

Export Citation Format

Share Document