Determination of the Global-Average Charge Moment of a Lightning Flash Using Schumann Resonances and the LIS/OTD Lightning Data

2018 ◽  
Vol 123 (1) ◽  
pp. 108-123 ◽  
Author(s):  
Robert Boldi ◽  
Earle Williams ◽  
Anirban Guha
1993 ◽  
Vol 74 (1) ◽  
pp. 245-250 ◽  
Author(s):  
P. L. Madsen ◽  
B. K. Sperling ◽  
T. Warming ◽  
J. F. Schmidt ◽  
N. H. Secher ◽  
...  

Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions. To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow velocity in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise, whereas a 22% (P < 0.0001) increase in MCA Vmean was observed. Hence, the exercise-induced increase in MCA Vmean is not a reflection of a proportional increase in CBF.


2020 ◽  
Author(s):  
Ashok K. Luhar ◽  
Ian E. Galbally ◽  
Matthew T. Woodhouse ◽  
Nathan Luke Abraham

Abstract. Although lightning-generated oxides of nitrogen (LNOx) account for only approximately 10 % of the global NOx source, it has a disproportionately large impact on tropospheric photochemistry due to the conducive conditions in the tropical upper troposphere where lightning is mostly discharged. In most global composition models, lightning flash rates used to calculate LNOx are expressed in terms of convective cloud-top height via the Price and Rind (1992) (PR92) parameterisations for land and ocean. We conduct a critical assessment of flash-rate parameterisations that are based on cloud-top height and validate them within the ACCESS-UKCA global chemistry-climate model using the LIS/OTD satellite data. While the PR92 parameterisation for land yields satisfactory predictions, the oceanic parameterisation underestimates the observed flash-rate density severely, yielding a global average of 0.33 flashes/s compared to the observed 9.16 flashes/s over the ocean and leading to LNOx being underestimated proportionally. We formulate new/alternative flash-rate parameterisations following Boccippio’s (2002) scaling relationships between thunderstorm electrical generator power and storm geometry coupled with available data. While the new parameterisation for land performs very similar to the corresponding PR92 one as would be expected, the new oceanic parameterisation simulates the flash-rate observations more accurately, giving a global average of 8.84 flashes/s. The use of the improved flash-rate parameterisations in ACCESS-UKCA changes the modelled tropospheric composition—global LNOx increases from 4.8 to 6.6 Tg N/yr; the ozone (O3) burden increases by 8.5 %; there is an increase in the mid- to upper-tropospheric NOx by as much as 40 ppt; a 13 % increase in the global hydroxyl (OH); a decrease in the methane lifetime by 6.7 %; and a decrease in the lower tropospheric carbon monoxide (CO) by 3–7 %. Overall, the modelled tropospheric NOx and ozone are improved compared to observations, particularly in the Southern Hemisphere and over the ocean.


2011 ◽  
Author(s):  
J. Rosado ◽  
F. Blanco ◽  
F. Arqueros ◽  
Hiroyuki Sagawa ◽  
Yoshiya Kawasaki ◽  
...  

2021 ◽  
Vol 21 (9) ◽  
pp. 7053-7082
Author(s):  
Ashok K. Luhar ◽  
Ian E. Galbally ◽  
Matthew T. Woodhouse ◽  
Nathan Luke Abraham

Abstract. Although lightning-generated oxides of nitrogen (LNOx) account for only approximately 10 % of the global NOx source, they have a disproportionately large impact on tropospheric photochemistry due to the conducive conditions in the tropical upper troposphere where lightning is mostly discharged. In most global composition models, lightning flash rates used to calculate LNOx are expressed in terms of convective cloud-top height via the Price and Rind (1992) (PR92) parameterisations for land and ocean, where the oceanic parameterisation is known to greatly underestimate flash rates. We conduct a critical assessment of flash-rate parameterisations that are based on cloud-top height and validate them within the Australian Community Climate and Earth System Simulator – United Kingdom Chemistry and Aerosol (ACCESS-UKCA) global chemistry–climate model using the Lightning Imaging Sensor and Optical Transient Detector (LIS/OTD) satellite data. While the PR92 parameterisation for land yields satisfactory predictions, the oceanic parameterisation, as expected, underestimates the observed flash-rate density severely, yielding a global average over the ocean of 0.33 flashes s−1 compared to the observed 9.16 flashes s−1 and leading to LNOx being underestimated proportionally. We formulate new flash-rate parameterisations following Boccippio's (2002) scaling relationships between thunderstorm electrical generator power and storm geometry coupled with available data. The new parameterisation for land performs very similarly to the corresponding PR92 one, as would be expected, whereas the new oceanic parameterisation simulates the flash-rate observations much more accurately, giving a global average over the ocean of 8.84 flashes s−1. The use of the improved flash-rate parameterisations in ACCESS-UKCA changes the modelled tropospheric composition – global LNOx increases from 4.8 to 6.6 Tg N yr−1; the ozone (O3) burden increases by 8.5 %; there is an increase in the mid- to upper-tropospheric NOx by as much as 40 pptv, a 13 % increase in the global hydroxyl radical (OH), a decrease in the methane lifetime by 6.7 %, and a decrease in the lower-tropospheric carbon monoxide (CO) by 3 %–7 %. Compared to observations, the modelled tropospheric NOx and ozone in the Southern Hemisphere and over the ocean are improved by this new flash-rate parameterisation.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1972 ◽  
Vol 1 ◽  
pp. 27-38
Author(s):  
J. Hers

In South Africa the modern outlook towards time may be said to have started in 1948. Both the two major observatories, The Royal Observatory in Cape Town and the Union Observatory (now known as the Republic Observatory) in Johannesburg had, of course, been involved in the astronomical determination of time almost from their inception, and the Johannesburg Observatory has been responsible for the official time of South Africa since 1908. However the pendulum clocks then in use could not be relied on to provide an accuracy better than about 1/10 second, which was of the same order as that of the astronomical observations. It is doubtful if much use was made of even this limited accuracy outside the two observatories, and although there may – occasionally have been a demand for more accurate time, it was certainly not voiced.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


Sign in / Sign up

Export Citation Format

Share Document