High‐toughness Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells

Author(s):  
Costas N. Karatzas ◽  
Nathalie Chretien ◽  
François Duguay ◽  
Annie Bellemare ◽  
Jiang Feng Zhou ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyan Wang ◽  
Xin Huang ◽  
Xinxing Zhang

AbstractSelf-healing materials integrated with excellent mechanical strength and simultaneously high healing efficiency would be of great use in many fields, however their fabrication has been proven extremely challenging. Here, inspired by biological cartilage, we present an ultrarobust self-healing material by incorporating high density noncovalent bonds at the interfaces between the dentritic tannic acid-modified tungsten disulfide nanosheets and polyurethane matrix to collectively produce a strong interfacial interaction. The resultant nanocomposite material with interwoven network shows excellent tensile strength (52.3 MPa), high toughness (282.7 MJ m‒3, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80–100%), which overturns the previous understanding of traditional noncovalent bonding self-healing materials where high mechanical robustness and healing ability are mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible smart actuation devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.


2013 ◽  
Vol 14 (6) ◽  
pp. 1751-1760 ◽  
Author(s):  
Sherry L. Adrianos ◽  
Florence Teulé ◽  
Michael B. Hinman ◽  
Justin A. Jones ◽  
Warner S. Weber ◽  
...  

2020 ◽  
Author(s):  
Yuyan Wang ◽  
Xin Huang ◽  
Xinxing Zhang

Abstract Self-healing materials integrated with robust mechanical strength and high healing efficiency simultaneously would be of great use in many fields but have been proven to be extremely challenging. Here, inspired by animal cartilage, we present a ultrarobust self-healing material by incorporating high density noncovalent bonds at interface between the assembled interwoven network of two-dimensional nanosheets and polymer matrix to collectively produce a strong interfacial interaction. The resulted nanocomposite material shows robust tensile strength (52.3 MPa), high toughness (282.7 MJ m–3, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80-100%), which overturns previous understanding of the traditional noncovalent bonding self-healing materials that high mechanical robustness and healing ability tend to be mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.


Biochimie ◽  
2020 ◽  
Vol 175 ◽  
pp. 77-84
Author(s):  
Hongnian Zhu ◽  
Yuan Sun ◽  
Tuo Yi ◽  
Suyang Wang ◽  
Junpeng Mi ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3248
Author(s):  
Gabriele Greco ◽  
Juanita Francis ◽  
Tina Arndt ◽  
Benjamin Schmuck ◽  
Fredrik G. Bäcklund ◽  
...  

Efficient production of artificial spider silk fibers with properties that match its natural counterpart has still not been achieved. Recently, a biomimetic process for spinning recombinant spider silk proteins (spidroins) was presented, in which important molecular mechanisms involved in native spider silk spinning were recapitulated. However, drawbacks of these fibers included inferior mechanical properties and problems with low resistance to aqueous environments. In this work, we show that ≥5 h incubation of the fibers, in a collection bath of 500 mM NaAc and 200 mM NaCl, at pH 5 results in fibers that do not dissolve in water or phosphate buffered saline, which implies that the fibers can be used for applications that involve wet/humid conditions. Furthermore, incubation in the collection bath improved the strain at break and was associated with increased β-sheet content, but did not affect the fiber morphology. In summary, we present a simple way to improve artificial spider silk fiber strain at break and resistance to aqueous solvents.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1853
Author(s):  
Aleksandra P. Kiseleva ◽  
Grigorii O. Kiselev ◽  
Valeria O. Nikolaeva ◽  
Gulaim Seisenbaeva ◽  
Vadim Kessler ◽  
...  

High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.


2020 ◽  
Vol 21 (6) ◽  
pp. 2116-2124
Author(s):  
Nathalie Gonska ◽  
Patricia A. López ◽  
Paloma Lozano-Picazo ◽  
Michael Thorpe ◽  
Gustavo V. Guinea ◽  
...  

Author(s):  
N. Huby ◽  
A. Renault ◽  
S. Beaufils ◽  
V. Vié ◽  
T. Lefèvre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document