Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction

Author(s):  
David B. Mitzi
1996 ◽  
Vol 451 ◽  
Author(s):  
D. Lincot ◽  
M. J. Furlong ◽  
M. Froment ◽  
R. Cortes ◽  
M. C. Bernard

ABSTRACTChalcogenide semiconductors have been deposited epitaxially from aqueous solutions either chemically or electrochemically at growth rates of up to 0.7 μmhr−1. After recalling the basic principles of these deposition processes, results are presented concerning chemically deposited CdS on InP, GaP and CuInSe2 substrates, electrodeposited CdTe on InP, and CdSAnP heterostructures. Characterisation of these structures by RHEED, TEM, HRTEM, and glazing angle X ray diffraction allows to analyse the effects of substrate orientation, polarity, lattice match plus the influence of temperature on epitaxial growth. These results are discussed in terms of self organisation and a site selective growth mechanisms due to the free enegy of formation of each compound.


Author(s):  
Jose Jonathan Rubio Arias ◽  
Jinsang Kim ◽  
Bianca Pedroso Silva Santos ◽  
Lais Schmidt Albuquerque ◽  
Isabela Custodio Mota ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 170
Author(s):  
Michele Caselle

In this review, after a general introduction to the effective string theory (EST) description of confinement in pure gauge theories, we discuss the behaviour of EST as the temperature is increased. We show that, as the deconfinement point is approached from below, several universal features of confining gauge theories, like the ratio Tc/σ0, the linear increase of the squared width of the flux tube with the interquark distance, or the temperature dependence of the interquark potential, can be accurately predicted by the effective string. Moreover, in the vicinity of the deconfinement point the EST behaviour turns out to be in good agreement with what was predicted by conformal invariance or by dimensional reduction, thus further supporting the validity of an EST approach to confinement.


Sign in / Sign up

Export Citation Format

Share Document