Immunization Against Bovine Papillomavirus Infection

Author(s):  
William P. Pilacinski ◽  
Donald L. Glassman ◽  
Kimberly F. Glassman ◽  
David E. Reed ◽  
Melissa A. Lum ◽  
...  
2020 ◽  
Vol 57 (4) ◽  
pp. 525-534
Author(s):  
Veronika Apprich ◽  
Theresia Licka ◽  
Sabrina Freiler ◽  
Cordula Gabriel

Impaired keratinocyte differentiation has recently been suggested as a key event in equine hoof canker development. Koilocytotic appearance of keratinocytes, one of the most characteristic morphological alterations in hoof canker tissue, is also a common marker for papillomavirus (PV) infection, and bovine PV-1 and/or -2 (BPV-1/2) has previously been detected in equine canker patients. Therefore, the present study aimed to correlate the frequency and severity of koilocytotic keratinocytes with BPV detection in hoof canker samples. Hoof tissue of 5/18 canker-affected horses and 2/6 control horses tested positive for BPV-1/2 DNA using polymerase chain reaction. Thus, no association between the presence of BPV-1/2 papillomaviral DNA and koilocytotic appearance was found. Proteins associated with but not specific for PV infection were also investigated. Using immunohistochemistry, specific adhesion molecules (E-cadherin and β-catenin) and intermediate filaments (keratins 6 and 14) important for intact epidermal barrier function and keratinocyte differentiation were documented in control samples ( n = 6) and in hoof canker tissue samples ( n = 19). Altered expression patterns of intermediate filaments and adhesion molecules were demonstrated in canker tissue, confirming the importance of incomplete keratinocyte differentiation, as well as the crucial role of keratinocyte differentiation in hoof canker.


2011 ◽  
Vol 92 (10) ◽  
pp. 2437-2445 ◽  
Author(s):  
Bettina Hartl ◽  
Edmund K. Hainisch ◽  
Saeed Shafti-Keramat ◽  
Reinhard Kirnbauer ◽  
Annunziata Corteggio ◽  
...  

Bovine papillomavirus types 1 and 2 (BPV-1 and BPV-2) are known to induce common equine skin tumours, termed sarcoids. Recently, it was demonstrated that vaccination with BPV-1 virus-like particles (VLPs) is safe and highly immunogenic in horses. To establish a BPV-1 challenge model for evaluation of the protective potential of BPV-1 VLPs, four foals were injected intradermally with infectious BPV-1 virions and with viral genome-based and control inocula, and monitored daily for tumour development. Blood was taken before inoculation and at weekly intervals. BPV-1-specific serum antibodies were detected by a pseudo-virion neutralization assay. Total nucleic acids extracted from tumours, intact skin and PBMCs were tested for the presence of BPV-1 DNA and mRNA using PCR and RT-PCR, respectively. Intralesional E5 oncoprotein expression was determined by immunofluorescence. Pseudo-sarcoids developed exclusively at sites inoculated with virions. Tumours became palpable 11–32 days after virion challenge, reached a size of ≤20 mm in diameter and then resolved in ≤6 months. No neutralizing anti-BPV-1 serum antibodies were detectable pre- or post-challenge. BPV-1 DNA was present in lesions but not in intact skin. In PBMCs, viral DNA was already detectable before lesions were first palpable, in concentrations correlating directly with tumour growth kinetics. PBMCs from two of two foals also harboured E5 mRNA. Immunofluorescence revealed the presence of the E5 protein in tumour fibroblasts, but not in the apparently normal epidermis overlying the lesions. Together with previous findings obtained in horses and cows, these data suggest that papillomavirus infection may include a viraemic phase.


Author(s):  
R. Franco de Carvalho ◽  
R.P. Araldi ◽  
T.A. Nascimento de Lima ◽  
D.G. Modolo ◽  
J. Mazzuchelli de Souza ◽  
...  

2008 ◽  
Vol 83 (1) ◽  
pp. 167-180 ◽  
Author(s):  
Rong Jia ◽  
Xuefeng Liu ◽  
Mingfang Tao ◽  
Michael Kruhlak ◽  
Ming Guo ◽  
...  

ABSTRACT The viral early-to-late switch of papillomavirus infection is tightly linked to keratinocyte differentiation and is mediated in part by alternative mRNA splicing. Here, we report that SRp20, a cellular splicing factor, controls the early-to-late switch via interactions with A/C-rich RNA elements. An A/C-rich SE4 element regulates the selection of a bovine papillomavirus type 1 (BPV-1) late-specific splice site, and binding of SRp20 to SE4 suppresses this selection. Expression of late BPV-1 L1 or human papillomavirus (HPV) L1, the major capsid protein, inversely correlates with SRp20 levels in the terminally differentiated keratinocytes. In HPV type 16, a similar SRp20-interacting element also controls the viral early-to-late switch. Keratinocytes in raft cultures, which support L1 expression, make considerably less SRp20 than keratinocytes in monolayer cultures, which do not support L1 expression. Conversely, abundant SRp20 in cancer cells or undifferentiated keratinocytes is important for the expression of the viral early E6 and E7 by promoting the expression of cellular transcription factor SP1 for transactivation of viral early promoters.


2019 ◽  
Vol 236 ◽  
pp. 108396 ◽  
Author(s):  
Sante Roperto ◽  
Francesca De Falco ◽  
Antonella Perillo ◽  
Cornel Catoi ◽  
Franco Roperto

2009 ◽  
Vol 84 (1) ◽  
pp. 543-557 ◽  
Author(s):  
Vandana Sekhar ◽  
Shawna C. Reed ◽  
Alison A. McBride

ABSTRACT During persistent papillomavirus infection, the viral E2 protein tethers the viral genome to the host cell chromosomes, ensuring maintenance and segregation of the viral genome during cell division. However, E2 proteins from different papillomaviruses interact with distinct chromosomal regions and targets. The tethering mechanism has been best characterized for bovine papillomavirus type 1 (BPV1), where the E2 protein tethers the viral genome to mitotic chromosomes in complex with the cellular bromodomain protein, Brd4. In contrast, the betapapillomavirus human papillomavirus type 8 (HPV8) E2 protein binds to the repeated ribosomal DNA genes that are found on the short arm of human acrocentric chromosomes. In this study, we show that a short 16-amino-acid peptide from the hinge region and the C-terminal DNA binding domain of HPV8 E2 are necessary and sufficient for interaction with mitotic chromosomes. This 16-amino-acid region contains an RXXS motif that is highly conserved among betapapillomaviruses, and both arginine 250 and serine 253 residues within this motif are required for mitotic chromosome binding. The HPV8 E2 proteins are highly phosphorylated, and serine 253 is a site of phosphorylation. The HPV8 E2 chromosome binding sequence also has sequence similarity with chromosome binding regions in the gammaherpesvirus EBNA and LANA tethering proteins.


2021 ◽  
Vol 8 ◽  
Author(s):  
Maria Longeri ◽  
Valeria Russo ◽  
Maria Giuseppina Strillacci ◽  
Antonella Perillo ◽  
Michela Carisetti ◽  
...  

Blood samples from 260 unrelated cattle (132 animals affected by papillomavirus-associated bladder tumors and 128 healthy) were genotyped using the classic polymerase chain reaction/restriction fragment length polymorphism method to screen MHC class II bovine leukocyte antigen-DRB3. 2 polymorphism. The DRB3*22 allele was significantly (p ≤ 0.01) detected in healthy cattle, thus appearing to have a negative association (protective effect) with virus infection of the urinary bladder known to represent a bladder tumor risk for cattle living free at pasture. Considering the two sequence alleles identified in animals carrying DRB3*22, DRB3*011:01 allele from samples of animals harboring the unexpressed bovine papillomaviruses (BPV)-2 E5 gene was characterized by amino acid residues believed to have a protective effect against BPV infection such as arginine at position 71 (R71) in pocket 4, histidine at position 11 (H11) in pocket 6, and both glutamine at position 9 (Q9) and serine at position 57 (S57) in pocket 9 of the antigen-binding groove. The DRB3*011:02v allele from affected animals was characterized by amino acids believed to be susceptibility residues such as lysine (K71), tyrosine (Y11), glutamic acid (E9), and aspartic acid (D57) in these pockets. These results suggest that animals harboring the DRB3*011:01 allele may have a lower risk of BPV infection and, consequently, a reduced risk of bladder tumors.


2001 ◽  
Vol 45 (4) ◽  
pp. 1014-1021 ◽  
Author(s):  
A. Pawellek ◽  
G. Hewlett ◽  
J. Kreuter ◽  
H. Rübsamen-Waigmann ◽  
O. Weber

ABSTRACT The report describes the establishment and characterization of a mouse xenograft transplantation model for the study of papillomavirus infection of bovine skin. Calf scrotal skin was inoculated with bovine papillomavirus type 2 before grafting it to the dorsum of severe combined immunodeficient mice. The grafted skin contained epidermis, dermis, and a thin layer of fat. After 5 months the induced warts not only showed histological features of papillomavirus infections but also tested positive for viral DNA and papillomavirus capsid antigen. The formation of infectious virions was demonstrated by inoculation of new transplants with crude extract from the induced warts as well as in a cell culture focus assay. Topical application of bromovinyl-2′-deoxyuridine led to a reduction in viral DNA content in the developing wart. This small-animal xenograft model should be useful for characterizing antiviral compounds and providing an understanding of the regulation of papillomavirus infections.


Sign in / Sign up

Export Citation Format

Share Document