The Hydroxamic Acid Pathway

Author(s):  
Alfons Gierl ◽  
Monika Frey
Keyword(s):  
1990 ◽  
Vol 64 (03) ◽  
pp. 473-477 ◽  
Author(s):  
Shih-Luen Chen ◽  
Wu-Chang Yang ◽  
Tung-Po Huang ◽  
Shiang Wann ◽  
Che-ming Teng

SummaryTherapeutic preparations of desmopressin for parenteral use contain the preservative chlorobutanol (5 mg/ml). We show here that chlorobutanol is a potent inhibitor of platelet aggregation and release. It exhibited a significant inhibitory activity toward several aggregation inducers in a concentration- and time-dependent manner. Thromboxane B2 formation, ATP release, and elevation of cytosolic free calcium caused by collagen, ADP, epinephrine, arachidonic acid and thrombin respectively were markedly inhibited by chlorobutanol. Chlorobutanol had no effect on elastase- treated platelets and its antiplatelet effect could be reversed. It is concluded that the antiplatelet effect of chlorobutanol is mainly due to its inhibition on the arachidonic acid pathway but it is unlikely to have a nonspecitic toxic effect. This antiplatelet effect of chlorobutanol suggests that desmopressin, when administered for improving hemostasis, should not contain chlorobutanol as a preservative.


2019 ◽  
Vol 19 (7) ◽  
pp. 916-934 ◽  
Author(s):  
Appavoo Umamaheswari ◽  
Ayarivan Puratchikody ◽  
Natarajan Hari

Background:The available treatment option for any type of cancer including CTCL is chemotherapy and radiation therapy which indiscriminately persuade on the normal cells. One way out for selective destruction of CTCL cells without damaging normal cells is the use of histone deacetylase inhibitors (HDACi). Despite promising results in the treatment of CTCL, these HDACi have shown a broadband inhibition profile, moderately selective for one HDAC class but not for a particular isotype. The prevalence of drug-induced side effects leaves open a narrow window of speculation that the decreased therapeutic efficacy and observed side effects may be most likely due to non specific HDAC isoform inhibition. The aim of this paper is to synthesis and evaluates HDAC8 isoform specific inhibitors.Methods:Based on the preliminary report on the design and in silico studies of 52 hydroxamic acid derivatives bearing multi-substituent heteroaromatic rings with chiral amine linker, five compounds were shortlisted and synthesized by microwave assisted approach and high yielding synthetic protocol. A series of in vitro assays in addition to HDAC8 inhibitory activity was used to evaluate the synthesised compounds.Results:Inhibitors 1e, 2e, 3e, 4e and 5e exerted the anti-proliferative activities against CTCL cell lines at 20- 100 µM concentrations. Both the pyrimidine- and pyridine-based probes exhibited μM inhibitory activity against HDAC8. The pyrimidine-based probe 1e displayed remarkable HDAC8 selectivity superior to that of the standard drug, SAHA with an IC50 at 0.1µM.Conclusion:Our study demonstrated that simple modifications at different portions of pharmacophore in the hydroxamic acid analogues are effective for improving both HDAC8 inhibitory activity and isoform selectivity. Potent and highly isoform-selective HDAC8 inhibitors were identified. These findings would be expedient for further development of HDAC8-selective inhibitors.


Sign in / Sign up

Export Citation Format

Share Document