Powder Material Principles Applied to Additive Manufacturing

2012 ◽  
pp. 537-544 ◽  
Author(s):  
David L. Bourell ◽  
Joseph J. Beaman
Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1988 ◽  
Author(s):  
Jinqiang Ning ◽  
Wenjia Wang ◽  
Xuan Ning ◽  
Daniel E. Sievers ◽  
Hamid Garmestani ◽  
...  

This work presents a computationally efficient predictive model based on solid heat transfer for temperature profiles in powder bed metal additive manufacturing (PBMAM) considering the heat transfer boundary condition and powder material properties. A point moving heat source model is used for the three-dimensional temperature prediction in an absolute coordinate. The heat loss from convection and radiation is calculated using a heat sink solution with a mathematically discretized boundary considering non-uniform temperatures and heat loss at the boundary. Powder material properties are calculated considering powder size statistical distribution and powder packing. The spatially uniform and temperature-independent material properties are employed in the temperature prediction. The presented model was tested in PBMAM of AlSi10Mg under different process conditions. The calculations of material properties are needed for AlSi10Mg because of the significant difference in thermal conductivity between powder form and solid bulk form. Close agreement is observed upon experimental validation on the molten pool dimensions.


2018 ◽  
Vol 55 (1) ◽  
pp. 011407
Author(s):  
董世运 Dong Shiyun ◽  
闫世兴 Yan Shixing ◽  
冯祥奕 Feng Xiangyi ◽  
李永健 Li Yongjian ◽  
陈岁元 Chen Suiyuan

Author(s):  
Christoph Haberland ◽  
Mohammad Elahinia ◽  
Jason Walker ◽  
Horst Meier

This work covers different aspects of additive manufacturing of Nitinol parts. Firstly, requirements for the powder material and guidelines for the powder preparation are described in detail because the use of proper powder is essential for additive processing of high quality parts. Next, this work presents examples for Nitinol actuators, smart structures and devices which are produced by additive manufacturing. By demonstrating the functionality of these parts (e.g. shape recovery behavior after deformation), this work clearly points out a high potential for additive manufacturing of Nitinol. Moreover, additive manufacturing might even be able to open up new perspectives for Nitinol devices that have yet to be imagined.


2019 ◽  
Vol 894 ◽  
pp. 140-148
Author(s):  
Vo Tuyen ◽  
Thanh Nam Nguyen ◽  
Khanh Dien Le

Selective Laser Sintering (SLS) is an HYPERLINK "https://en.wikipedia.org/wiki/Additive_manufacturing" \o "Additive manufacturing" additive manufacturing (AM) technique that uses a HYPERLINK "https://en.wikipedia.org/wiki/Laser" \o "Laser" Laser as the power source to HYPERLINK "https://en.wikipedia.org/wiki/Sintering" \o "Sintering" sinter powdered material, typically HYPERLINK "https://en.wikipedia.org/wiki/Nylon" \o "Nylon" nylon/ HYPERLINK "https://en.wikipedia.org/wiki/Polyamide" \o "Polyamide" polyamide HYPERLINK "https://en.wikipedia.org/wiki/Selective_laser_sintering" \l "cite_note-1" [7], HYPERLINK "https://en.wikipedia.org/wiki/Selective_laser_sintering" \l "cite_note-2" [8]. A Laser beam HYPERLINK "https://en.wikipedia.org/wiki/Automation" \o "Automation" automatically aims at points in space defined by a HYPERLINK "https://en.wikipedia.org/wiki/3D_modeling" \o "3D modeling" 3D model, binding the material together to create a solid structure. In the SLS rapid prototype machine, a high power CO2 Laser sources is applied for sintering the powder material to its melting point temperature. The ability of application of a Laser radiation for sintering the material depends on the power of energy source and the time of interaction of radiation with the material of the product. Otherwise, the design of Laser beam for sintering powder material depends on the technical parameters such as power Laser source, Laser point size, type and focus of lenses.... This article presents a study on the design of our own Laser beam sintering in the SLS rapid prototype that satisfies the technical requirements. The results of testing show that the designed and manufactured Laser beam instrument in SLS rapid prototype machine in our laboratory can be approved because it satisfies all the technological requirements of the medium range of SLS rapid prototyping machine.


2013 ◽  
Vol 22 (03) ◽  
pp. 180-187 ◽  
Author(s):  
J. Henke ◽  
J. T. Schantz ◽  
D. W. Hutmacher

ZusammenfassungDie Behandlung ausgedehnter Knochen-defekte nach Traumata oder durch Tumoren stellt nach wie vor eine signifikante Heraus-forderung im klinischen Alltag dar. Aufgrund der bestehenden Limitationen aktueller Therapiestandards haben Knochen-Tissue-Engineering (TE)-Verfahren zunehmend an Bedeutung gewonnen. Die Entwicklung von Additive-Manufacturing (AM)-Verfahren hat dabei eine grundlegende Innovation ausgelöst: Durch AM lassen sich dreidimensionale Gerüstträger in einem computergestützten Schichtfür-Schicht-Verfahren aus digitalen 3D-Vorlagen erstellen. Wurden mittels AM zunächst nur Modelle zur haptischen Darstellung knöcherner Pathologika und zur Planung von Operationen hergestellt, so ist es mit der Entwicklung nun möglich, detaillierte Scaffoldstrukturen zur Tissue-Engineering-Anwendung im Knochen zu fabrizieren. Die umfassende Kontrolle der internen Scaffoldstruktur und der äußeren Scaffoldmaße erlaubt eine Custom-made-Anwendung mit auf den individuellen Knochendefekt und die entsprechenden (mechanischen etc.) Anforderungen abgestimmten Konstrukten. Ein zukünftiges Feld ist das automatisierte ultrastrukturelle Design von TE-Konstrukten aus Scaffold-Biomaterialien in Kombination mit lebenden Zellen und biologisch aktiven Wachstumsfaktoren zur Nachbildung natürlicher (knöcherner) Organstrukturen.


Sign in / Sign up

Export Citation Format

Share Document