Electrodeposition of Zinc from Zinc Oxide Using Urea and Choline Chloride Mixture: Effect of (BMIM)HSO4, Temperature, Voltage on Current Efficiency, Energy Consumption, and Surface Morphology

2014 ◽  
pp. 21-26
Author(s):  
Haoxing Yang ◽  
Ramana. G. Reddy
2013 ◽  
Vol 461 ◽  
pp. 553-561
Author(s):  
Rashid Qaisrani ◽  
Jian Qiao Li ◽  
Mohammad Iqbal

Soil adheres to the surfaces of soil engaging components of earthmoving machinery and equipment. It has been pbserved that up to 50% of energy may be consumed in overcoming adhesion and friction of soil to the surfaces of soil engaging components of agricultural and earthmoving machinery. Surface morphology, chemical composition, elasticity, lubrication mechanism and electric osmosis play significant roles in reducing adhesion, friction and energy consumption of various equipment. Some of these techniques have very limited application in the practical field conditions because of the time and amount of fluid required to achieve the desired results. Whereas other techniques are effective in reducing adhesion and friction and improving work quality of these machines and equipment. This paper analyses the forces including the drafts of conventional and bionic bulldozing blades operating under identical conditions using mathematical modelling. The force analysis showed that both adhesion and friction play major role in reducing drafts of earrthmoving machinery. It is also worth stating that both the surface morphology and the construction materials play important role in reducing adhesion and friction of ground eganging components of earthmoving machinery.


2018 ◽  
Vol 279 ◽  
pp. 77-84 ◽  
Author(s):  
Wen Tang Xia ◽  
Xiao Yan Xiang ◽  
Wen Qiang Yang ◽  
Jian Guo Yin

Because of distinctive properties, such as dendritic structure, high green strength, and low oxygen content, electrolytic copper powder has been widely used in aviation, aerospace, national defense industry and other domains. But at present, energy consumption of the electrolysis process in copper powder production is high, and the current efficiency is only about 90%. Therefore,the decrease in energy consumption of the electrolysis process has become the major bottlenecks in the development of the enterprises. In this paper, a new electrolysis cell with different electrolyte inlet arranged on the cell was manufactured. Then, the effect of flow pattern of electrolyte on the current efficiency, energy consumption and properties of copper powder was investigated. The experimental results showed that the electrolytic process had the higher current efficiency, lower energy consumption and smaller copper powders when the flow rate is 0.5l/min in the paralleled inlet and 1.5 l/min in the traditional inlet. Under the optimal conditions, the current efficiency, energy consumption and copper powder size were 99.10%, 712.90kw∙h/t and 47.80um respectively. This means an obvious rise in current efficiency and decrease in energy consumption compared to traditional feeding method.


2009 ◽  
Vol 79-82 ◽  
pp. 1743-1746
Author(s):  
Atsushi Chiba

Zn plated on Cu plate from 0.65 mol/dm3 alkali zincate solution in 8 mol/dm3 KOH bath Electrolysis was carried out as current density of 10 - 100 mA/cm2. The sonication was prepared 40 kHz. The current efficiency was 76.1 % at 10 mA/cm2 in 0.10 mol/dm3 zincate and 100 % in 0.15 mol/dm3 zincate at 50 mA/cm2. The current efficiency and thickness of diffusion layer affected with the agitation of micro-jet. Surface of film was smooth and dense as particle crushed down with the shockwave pressure. (112) plane moved horizontally to <113> direction under the compressive stress or shearing stress.


2018 ◽  
Vol 23 (2) ◽  
pp. 3-10
Author(s):  
Ewa Osuchowska ◽  
Zofia Buczko ◽  
Klaudia Olkowicz

In the present work, the electrodeposition process of Zn-Cr alloy coatings under the conditions of direct and pulse current was discussed. Changes in the Cr content in the obtained alloy coatings, current efficiency of the process, surface morphology, structure and microhardness as a function of chromium(III) concentration in the bath to deposition, current density (direct and pulse) and solution mixing were determined. Surface morphology, structure and hardness of the obtained coatings were investigated. The Zn-Cr alloy coatings of good quality contained up to 0.25 %Cr (for direct current) and up to 9% Cr (for pulse current). The tested Zn-Cr alloy coatings obtained under pulse current conditions showed higher microhardness than the Zn-Cr coatings obtained under direct current conditions and than zinc coatings.


2010 ◽  
Vol 7 (1-2) ◽  
pp. 61-66 ◽  
Author(s):  
Vanessa de Freitas Cunha Lins ◽  
Renata Abelha ◽  
Maria das Mercês Reis de Castro ◽  
Marina Maciel Dias de Souza ◽  
Leticia Lanza de Moraes ◽  
...  

2013 ◽  
Vol 828 ◽  
pp. 45-54 ◽  
Author(s):  
Anupam Agnihotri ◽  
Shail Umakant Pathak ◽  
Jyoti Mukhopadhyay

The Hall-Heroult process for the production of aluminium is based on the electrochemical reduction of alumina (Al2O3) dissolved in a cryolite (Na3AlF6) based electrolyte. Instability in cell voltage is referred to as noise. Normal voltage noise is inevitable due to bubble evolution and it has little effect on performance parameters such as, current efficiency and power consumption. Metal rolling noise (wavy noise) is caused by the disturbances in cell magnetic field and it affects the cell current efficiency adversely. Investigating the causes of the cell instability in the aluminium smelting cells can lead to better cell performance. Understanding the variation in cell voltage is critical for cells, because magnitude of voltage determines the energy consumption pattern in the process and hence, any saving on voltage can save energy. Voltage affects the current efficiency of the cell and an optimum cell voltage leads to higher current efficiency without compromising on energy consumption. Magnetic, current distribution, heat loss and voltage at zero current measurements along with online current and voltage signal can help to identify the problems and their combined effects on the performance of the cells. In order to estimate the loss in current efficiency of the aluminum electrolysis cells due to metal instabilities, measurements were performed and data analyzed. The present paper analyses the effect of voltage fluctuations (noise) during metal instability along with cause of instability and its effect on current efficiency of the cell. Measurements carried out to estimate the deviations from the normal cell operations are also discussed.


Sign in / Sign up

Export Citation Format

Share Document