adhesion friction
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 14)

H-INDEX

26
(FIVE YEARS 1)

Friction ◽  
2021 ◽  
Author(s):  
Francesc Pérez-Ràfols ◽  
Lucia Nicola

AbstractA model is proposed herein to investigate the incipient sliding of contacts in the presence of both friction and adhesion, where the interfacial response is modeled based on traction-separation laws. A Maugis-like parameter is defined to characterize the response in the tangential direction. Subsequently, the model is used to investigate the contact between a smooth cylinder and a flat body, where adhesion-friction interactions are strong. A range of behaviors are observed when a tangential displacement is imposed: When the parameter is low, the contact pressure exhibits a relatively constant profile; when it is high, a pressure spike is observed at the edge of the contact. This difference is caused by a significant interface compliance in the former case, which limits the amount of slip. The results for the mid-range values of the Maugis-like parameter can qualitatively replicate various experiments performed using polydimethylsiloxane (PDMS) balls.


Author(s):  
L. H. Espósito ◽  
E. S. Velasco ◽  
A. J. Marzocca

ABSTRACT Two proposed methods to determine the adhesion friction coefficient were validated by experimental results of two types of rubber compounds at different sliding velocities under dry conditions. The experimental results were measured from a linear friction tester, while the viscoelastic friction coefficient was estimated using the Persson's contact theory. Adhesive friction (model 1) was derived from the deconvolution of dry friction coefficient in two Gaussian-like curves. Interesting results were obtained using the deconvoluted method in the range of intermediate sliding velocities where preponderant contribution to the adhesion friction is replaced by the viscoelastic friction. Fitting parameter results were in good general agreement with values derived from the literature, confirming the influence of the mechanical properties of the compound and substrate texture on the proposed adhesion frictional method. The second adhesive friction model (model 2) was based on the confinement rheology of rubber chains on the contact with the asperities of the road surface. We demonstrated that acceptable adhesion friction results were achieved from a dynamic viscosity test at low frequencies, confirming the applicability of the proposed rheological model. Moreover, the relationship between the rubber composition and the modified contact layer along with the likely interphase reaction are also discussed.


Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 23
Author(s):  
Giuseppe Carbone ◽  
Francesco Bottiglione

The mechanical behavior of viscoelastic materials is a key factor of many physical phenomena occurring at the interface of contacting bodies [...]


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 376
Author(s):  
Mao Kaneko ◽  
Masanori Hiratsuka ◽  
Ali Alanazi ◽  
Hideki Nakamori ◽  
Kazushige Namiki ◽  
...  

We evaluated the adhesion, friction characteristics, durability against bodily acids, sterilization, cleaning, and anti-reflection performance of diamond-like carbon (DLC) coatings formed as a surface treatment of intracorporeal medical devices. The major coefficients of friction during intubation in a living body in all environments were lower with DLC coatings than with black chrome plating. DLC demonstrated an adhesion of approximately 24 N, which is eight times stronger than that of black chrome plating. DLC-coated samples also showed significant stability without being damaged during acid immersion and high-pressure steam sterilization, as suggested by the results of durability tests. In addition, the coatings remained unpeeled in a usage environment, and there was no change in the anti-reflection performance of the DLC coatings. In summary, DLC coatings are useful for improving intracorporeal device surfaces and extending the lives of medical devices.


Friction ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1-28
Author(s):  
Lei Chen ◽  
Linmao Qian

Abstract Surficial water adsorption and interfacial water condensation as natural phenomena that can alter the contact status of the solid interface and tribological performances are crucial in all length scales, i.e., from earthquakes to skating at the macroscale level and even to micro/nano-electromechanical systems (M/NEMS) at the microscale/nanoscale level. Interfacial water exhibits diverse structure and properties from bulk water because of its further interaction with solid surfaces. In this paper, the evolutions of the molecular configuration of the adsorbed water layer depending on solid surface chemistry (wettability) and structure, environmental conditions (i.e., relative humidity and temperature), and experimental parameters (i.e., sliding speed and normal load) and their impacts on tribological performances, such as adhesion, friction, and wear, are systematically reviewed. Based on these factors, interfacial water can increase or reduce adhesion and friction as well as facilitate or suppress the tribochemical wear depending on the water condensation kinetics at the interface as well as the thickness and structure of the involved interfacial water.


Lubricants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Matthias Senge ◽  
John Steger ◽  
Adrian Rienäcker ◽  
Angelika Brückner-Foit

When used as a turbine material, dry contacts of nickel-based superalloy experience stresses via pressure and temperature. As a result, there is a change in material in the form of oxide layer formation and a depletion of alloying elements (e.g., Al) in the base material. The resulting layers have different material properties compared to the base material, which affect the mechanical and contact behavior. Adhesion, friction and wear are among the effects that are of interest. In addition, the operating experience has shown that the contact pressure has a yet unclarified impact on the progression rate of the damage process (oxidation). This paper deals with the development of models that contribute to the understanding of the damage scenario and its prediction. We will see that the changed material properies in the oxid layer lead to high-stress peaks at the interface between the layers. This is the expected location were the accelerated damage occures.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Alexander D. Breki ◽  
Ekaterina S. Vasilyeva ◽  
Oleg V. Tolochko ◽  
Andrey L. Didenko ◽  
Michael Nosonovsky

Frictional properties of a self-lubricating nanocomposite material with an A–OOO polyimide matrix reinforced by gas-phase synthesized tungsten diselenide (WSe2) nanoparticles are studied with a homemade low sliding speed tribometer. Tungsten diselenide is often used as a solid lubricant due to its layered structure yielding to anisotropy, which enhances lubrication properties. To facilitate molecular adhesion friction mechanism, friction against a very smooth steel surface (a Johansson gauge block) was used. It is shown that the composite material reinforced with WSe2 nanoparticles has enhanced frictional performance including lower friction and adhesion.


Sign in / Sign up

Export Citation Format

Share Document