Air Bearings

2021 ◽  
Author(s):  
Farid Al‐Bender
Keyword(s):  
Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Mitsuru Miyazaki ◽  
Go Tanaka ◽  
Toshio Omi ◽  
...  

This paper describes three-dimensional isolation performance of seismic isolation system using air bearings. Long period seismic waves having predominant period of from a few seconds to a few ten seconds have recently been observed in various earthquakes. Also resonances of high-rise buildings and sloshing of petroleum tanks in consequence of long period seismic waves have been reported. Therefore the isolation systems having very long natural period or no natural period are required. In a previous paper [1], we proposed an isolation system having no natural period by using air bearings. Additionally we have already reported an introduction of the system, and have investigated horizontal motion during earthquake in the previous paper. It was confirmed by horizontal vibration experiment and simulation in the previous paper that the proposed system had good performance of isolation. However vertical motion should be investigated, because vertical motion varies horizontal frictional force. Therefore this paper describes investigation regarding vertical motion of the proposed system by experiment. At first, a vertical excitation test of the system is carried out so as to investigate vertical dynamic property. Then a three-dimensional vibration test using seismic waves is carried out so as to investigate performance of isolation against three-dimensional seismic waves.


2012 ◽  
Vol 531-532 ◽  
pp. 751-754
Author(s):  
Ying Xue Yao ◽  
Hong Bo Wang ◽  
Liang Zhou

A low-speed spindle running on air bearings is presented, it is used on rotary viscometer based on velocity attenuation of rotating cylinder. Principle of spindle is introduced, it is composed of a low speed motor and an air bearing. The low speed motor is a coupling of two motors. Design of the spindle shows the structure of it. Materials of the spindle are selected. The spindle is machined and operation process of it shows it is suitable for driving part of rotary viscometer based on velocity attenuation of rotating cylinder.


1970 ◽  
Vol 3 (1) ◽  
pp. 82-83
Author(s):  
V S Manian ◽  
R W Besant ◽  
T W McDonald
Keyword(s):  

2002 ◽  
Vol 125 (1) ◽  
pp. 145-151 ◽  
Author(s):  
Sang-Joon Yoon ◽  
Dong-Hoon Choi

This paper proposes an analytical design sensitivity analysis (DSA) to topological parameters of MGL (molecular gas film lubrication) sliders by introducing an adjoint variable method. For the analysis of slider air bearings, we used the spatial discretization of the generalized lubrication equation based on a control volume formulation. The residual functions for inverse analysis of the slider are considered as the equality constraint functions. The slider rail heights of all grid cells are chosen as design variables since they are the topological parameters determining air bearing surface (ABS). Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear asymmetric coefficient matrix and vector in the discrete system equations of slider air bearings. An alternating direction implicit (ADI) scheme is utilized to efficiently solve large-scale problem in special band storage. The simulation results of DSA are directly compared with those of finite-difference approximation (FDA) to show the effectiveness and accuracy of the proposed approach. The overall sensitivity distribution over the ABS is reported, and clearly shows to which section of the ABS the special attention should be given during the manufacturing process. It is demonstrated that the proposed method can reduce more than 99 percent of the CPU time in comparison with FDA, even though both methods give the same results.


2002 ◽  
Vol 45 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Kevin C. Radil ◽  
Christopher Dellacorte
Keyword(s):  

2011 ◽  
Vol 1 (MEDSI-6) ◽  
Author(s):  
P. Marion ◽  
L. Ducotte ◽  
M. Nicola ◽  
H. P. van der Kleij ◽  
L. Eybert ◽  
...  

In high-accuracy motion stages, the positioning accuracy at the point of interest is strongly influenced by guiding errors: for translation motions, straightness errors and angular errors (pitch, yaw and roll); for rotation motions, axial, radial and tilt errors. When air bearings are used for guiding, the air film averages out local irregularities of bearings surfaces, which helps reduce guiding errors considerably. Some results obtained with air bearing precision systems designed and manufactured by specialized companies and tested at ESRF are described below.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4190 ◽  
Author(s):  
Eric Chaidez ◽  
Shankar P. Bhattacharyya ◽  
Adonios N. Karpetis

The Hyperloop system offers the promise of transportation over distances of 1000 km or more, at speeds approaching the speed of sound, without the complexity and cost of high-speed trains or commercial aviation. Two crucial technological issues must be addressed before a practical system can become operational: air resistance, and contact/levitation friction must both be minimized in order to minimize power requirements and system size. The present work addresses the second issue by estimating the power requirements for each of the three major modes of Hyperloop operation: rolling wheels, sliding air bearings, and levitating magnetic suspension systems. The salient features of each approach are examined using simple theories and a comparison is made of power consumption necessary in each case.


Sign in / Sign up

Export Citation Format

Share Document