Design of Low-Speed Spindle Running on Air Bearings Used on Rotary Viscometer

2012 ◽  
Vol 531-532 ◽  
pp. 751-754
Author(s):  
Ying Xue Yao ◽  
Hong Bo Wang ◽  
Liang Zhou

A low-speed spindle running on air bearings is presented, it is used on rotary viscometer based on velocity attenuation of rotating cylinder. Principle of spindle is introduced, it is composed of a low speed motor and an air bearing. The low speed motor is a coupling of two motors. Design of the spindle shows the structure of it. Materials of the spindle are selected. The spindle is machined and operation process of it shows it is suitable for driving part of rotary viscometer based on velocity attenuation of rotating cylinder.

2011 ◽  
Vol 1 (MEDSI-6) ◽  
Author(s):  
P. Marion ◽  
L. Ducotte ◽  
M. Nicola ◽  
H. P. van der Kleij ◽  
L. Eybert ◽  
...  

In high-accuracy motion stages, the positioning accuracy at the point of interest is strongly influenced by guiding errors: for translation motions, straightness errors and angular errors (pitch, yaw and roll); for rotation motions, axial, radial and tilt errors. When air bearings are used for guiding, the air film averages out local irregularities of bearings surfaces, which helps reduce guiding errors considerably. Some results obtained with air bearing precision systems designed and manufactured by specialized companies and tested at ESRF are described below.


1997 ◽  
Vol 119 (3) ◽  
pp. 388-392
Author(s):  
J. M. Pitarresi ◽  
K. A. Haller

Air layer supported bearing pads, or “air bearings” as they are commonly called, are popular because of their high load capacity and low in-plane coefficient of friction, making them well suited for supporting moving, high accuracy manufacturing stages. Air/vacuum bearings enhance these capabilities by giving the bearing pad load resistance capacity in both the upward and downward directions. Consequently, it is desirable to know how to model the air layer between the bearing pad and the bearing surface. In this paper, a simple finite element modeling approach is presented for investigating the vibrational characteristics of an air layer supported bearing. It was found that by modeling the air layer as a bed of uniform springs who’s stiffness is determined by load-displacement tests of the bearing, a reasonable representation of the response can be obtained. For a bearing supported by air without vacuum, the dynamic response was very similar to that of a freely supported bearing. The addition of vacuum to an air bearing was found to significantly lower its fundamental frequency which could lead to unwanted resonance problems.


2021 ◽  
Author(s):  
Graeme P.A. Klim

In 2013 Elon Musk inspired engineers and entrepreneurs with his idea for a 5th mode of transportation: the Hyperloop. Using large near-vacuum tubes as a medium, Musk envisioned sending humans and cargo in levitating pods from Los Angeles to San Francisco California in 35 minutes or less. Consisting of multiple subsystems, these pods would use magnetic or air-bearing technology for primary levitation to accommodate speeds approaching 700 mph. To address Musk’s call for a traditional deployable wheel system to provide added safety and low-speed mobility for the pods, a patent-pending Hyperloop Deployable Wheel System (HDWS) was developed. This report details the author’s contribution to the design and development of the award-winning HDWS and examines the constraints and limitations imposed by the Hyperloop concept: small operational space, near-vacuum low-pressure conditions, high-speed use and smooth ride requirements.


Author(s):  
Adam Himes ◽  
Rick Budde

Air bearing vibrations at nanometer clearance levels are a major impediment to reducing head media spacing. Modern air bearings typically exhibit debilitating self-excited vibrations at fly heights of about 1–2 nm. At this point, peak head media spacing and contact pressures will increase, leading to performance and reliability issues. There has been considerable work performed to understand and improve air bearing stability at and around the point of contact, resulting in numerous experimental methods and design concepts in the literature. An area where additional research is worthwhile is the statistical behavior of contact vibrations. This paper explores the time dependence of fly height by using a simplified 2D air bearing with a mechanics based contact simulation. A comparison with measurements of fly height vibration demonstrates the utility of the simplified model and underscores the importance of proper time scale considerations.


Author(s):  
I. Cracaoanu ◽  
F. Bremer

In high precision system applications low friction levels between components are desirable. Moving heavy parts at high speeds and accelerations without friction is possible by using air bearings. The main failure ofthe air bearings is the wear phenomenon (modification of surface topography) that occurs due to crash into the counterpart when air supply is interrupted. The aim of this research is to investigate different types of air bearings for a large number of crashes using real operational parameters from the field: speed, acceleration, load and supply air pressure. The real crash phenomenon in a high precision machine hasbeen replicated using a test setup. During testing, evolution of air bearing surface topography and air bearing characteristics (gap and flow) after different number of crashes are investigated. Test results showthat some air bearings are not reaching the specified number of crashes due to large defects that occur on the bearing surface. Some specific relations were found between crash defects and parameters such asthe air gap size and the direct contact between opposing surfaces. The preferred type of air bearings shows good performance even above the maximum specified number of crashes. This behavior can be explainedby low friction level during crash tests between the opposing surfaces. The test results from this investigation produced a reliable candidate for air bearings in the high precision system application.


2003 ◽  
Vol 125 (2) ◽  
pp. 358-363 ◽  
Author(s):  
Xinjiang Shen ◽  
David B. Bogy

For a particle entrained in an air bearing, various forces, such as the viscous drag force, Saffmann and Magnus lift forces and gravity force, will act on it. Such particles may pass through the air bearing or impact the slider or disk and then adhere to the surface or bounce off. In this paper, particle flow in an air bearing is simulated. The contamination of particles on a slider’s surface is analyzed using the assumption of adhesion upon impact. The effect of particle size and density on particle paths in the air bearing is studied. The numerical results show that particles are likely to contaminate slider surfaces in the transition regions on the rails. The density of the particles and the pitch angle of the slider are also found to strongly affect the flying path of the particles, and therefore, the accumulation of the particles on slider surfaces.


Procedia CIRP ◽  
2017 ◽  
Vol 58 ◽  
pp. 607-612
Author(s):  
Christopher Müller ◽  
Sebastian Greco ◽  
Benjamin Kirsch ◽  
Jan C. Aurich

1968 ◽  
Vol 90 (4) ◽  
pp. 680-686 ◽  
Author(s):  
H. L. Wunsch

This paper attempts to illustrate the advantages and limitations of air bearings in the machine-tool and measuring instrument field by reference to actual industrial applications. It also indicates likely future developments.


Author(s):  
Shuyu Zhang ◽  
Brian Strom ◽  
Sungchang Lee ◽  
Dongman Kim ◽  
George Tyndall ◽  
...  

Thermomechanical actuation (TMA) at the transducer region of the air bearing surface (ABS) protrudes the transducers toward the recording media, yet also results in greater air bearing slider lift. The ratio of these two effects is defined as the TMA efficiency. An expression based on dimensional analysis is introduced to describe the changes of air bearing forces due to TMA protrusion. A framework is proposed that facilitates optimization of ABS design for improved TMA efficiency. On the basis of the theory presented, several ABSs are designed to have different TMA efficiency. Numerical solutions of these air bearings respect to the protrusion shows agreement with the proposed theory.


1999 ◽  
Vol 121 (2) ◽  
pp. 341-347 ◽  
Author(s):  
Q. H. Zengi ◽  
D. B. Bogy

We apply the dynamic simulation and modal analysis method to analyze the dynamic properties of slider-air bearings. First, the theoretical background and proposed methods are described. Then, five basic types, one of which is first proposed in this paper, of the air bearing surfaces (ABS) are briefly discussed. The dynamic properties of the sliders are investigated, and compared with each other. It is found that a negative pressure slider has the highest stiffness and lowest damping, the TPC and two newly proposed sliders demonstrate higher damping. Finally, the general ABS design problem is briefly discussed. A new advanced slider is designed, analyzed, and compared with the other sliders. The air bearing of the new slider design has larger stiffness and the highest damping of those studied.


Sign in / Sign up

Export Citation Format

Share Document