Structural and Morphology of Zn1−x Cux S Films as Anti-Reflecting Coating (ARC) Affected the Cell Performance

Author(s):  
Huda Abdullah ◽  
Hi Salwani ◽  
Sahbudin Saari
Keyword(s):  
2020 ◽  
pp. 114-119

Experimental and theoretical study Porphyrin-grafted ZnO nanowire arrays were investigated for organic/inorganic hybrid solar cell applications. Two types of porphyrin – Tetra (4-carboxyphenyle) TCPP and meso-Tetraphenylporphine (Zinc-TPP)were used to modify the nanowire surfaces. The vertically aligned nanowires with porphyrin modifications were embedded in graphene-enriched poly (3-hexylthiophene) [G-P3HT] for p-n junction nanowire solar cells. Surface grafting of ZnO nanowires was found to improve the solar cell efficiency. There are different effect for the two types of porphyrin as results of Zn existing. Annealing effects on the solar cell performance were investigated by heating the devices up to 225 °C in air. It was found that the cell performance was significantly degraded after annealing. The degradation was attributed to the polymer structural change at high temperature as evidenced by electrochemical impedance spectroscopy measurements.


2013 ◽  
Vol 51 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Sun-Min Park ◽  
Hae-Ran Cho ◽  
Byung-Hyun Choi ◽  
Yong-Tae An ◽  
Ja-Bin Koo ◽  
...  

2013 ◽  
Vol 31 ◽  
pp. 120-124 ◽  
Author(s):  
So Young Lee ◽  
Dong Won Shin ◽  
Chenyi Wang ◽  
Kang Hyuck Lee ◽  
Michael D. Guiver ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 718
Author(s):  
Van Men Truong ◽  
Ngoc Bich Duong ◽  
Hsiharng Yang

Gas diffusion layers (GDLs) play a critical role in anion exchange membrane fuel cell (AEMFC) water management. In this work, the effect of GDL thickness on the cell performance of the AEMFC was experimentally investigated. Three GDLs with different thicknesses of 120, 260, and 310 µm (denoted as GDL-120, GDL-260, and GDL-310, respectively) were prepared and tested in a single H2/O2 AEMFC. The experimental results showed that the GDL-260 employed in both anode and cathode electrodes exhibited the best cell performance. There was a small difference in cell performance for GDL-260 and GDL-310, while water flooding was observed in the case of using GDL-120 operated at current densities greater than 1100 mA cm−2. In addition, it was found that the GDL thickness had more sensitivity to the AEMFC performance as used in the anode electrode rather than in the cathode electrode, indicating that water removal at the anode was more challenging than water supply at the cathode. The strategy of water management in the anode should be different from that in the cathode. These findings can provide a further understanding of the role of GDLs in the water management of AEMFCs.


Author(s):  
Apichat Phengdaam ◽  
Supeera Nootchanat ◽  
Ryousuke Ishikawa ◽  
Chutiparn Lertvachirapaiboon ◽  
Kazunari Shinbo ◽  
...  

2021 ◽  
Vol 4 (3) ◽  
pp. 2307-2317
Author(s):  
Aki Kobayashi ◽  
Takahiro Fujii ◽  
Chie Harada ◽  
Eiichi Yasumoto ◽  
Kenyu Takeda ◽  
...  

2021 ◽  
Vol 373 ◽  
pp. 137890
Author(s):  
David P. Trudgeon ◽  
Adeline Loh ◽  
Habib Ullah ◽  
Xiaohong Li ◽  
Vladimir Yufit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document