New Oxy-Combustion Crown Design for Efficient Flue Gas Heat Recovery

Author(s):  
W. Kuhn ◽  
A. Reynolds
Keyword(s):  
Flue Gas ◽  
2002 ◽  
Author(s):  
Masahiro Osakabe ◽  
Sachiyo Horiki ◽  
Tsugue Itoh ◽  
Ikuya Haze

2021 ◽  
Vol 22 ◽  
pp. 100839
Author(s):  
Chunhua Min ◽  
Xuguang Yang ◽  
Jing He ◽  
Kun Wang ◽  
Liyao Xie ◽  
...  

2019 ◽  
Vol 150 ◽  
pp. 200-209 ◽  
Author(s):  
Min Yan ◽  
Chunyuan Ma ◽  
Qiuwan Shen ◽  
Zhanlong Song ◽  
Jingcai Chang

Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 19 ◽  
Author(s):  
Enhui Sun ◽  
Han Hu ◽  
Hangning Li ◽  
Chao Liu ◽  
Jinliang Xu

It is difficult to recover the residual heat from flue gas when supercritical carbon dioxide (S-CO2) cycle is used for a coal fired power plant, due to the higher CO2 temperature in tail flue and the limited air temperature in air preheater. The combined cycle is helpful for residual heat recovery. Thus, it is important to build an efficient bottom cycle. In this paper, we proposed a novel exergy destruction control strategy during residual heat recovery to equal and minimize the exergy destruction for different bottom cycles. Five bottom cycles are analyzed to identify their differences in thermal efficiencies (ηth,b), and the CO2 temperature entering the bottom cycle heater (T4b) etc. We show that the exergy destruction can be minimized by a suitable pinch temperature between flue gas and CO2 in the heater via adjusting T4b. Among the five bottom cycles, either the recompression cycle (RC) or the partial cooling cycle (PACC) exhibits good performance. The power generation efficiency is 47.04% when the vapor parameters of CO2 are 620/30 MPa, with the double-reheating-recompression cycle as the top cycle, and RC as the bottom cycle. Such efficiency is higher than that of the supercritical water cycle power plant.


Author(s):  
Aurel Gaba ◽  
Vasile Bratu ◽  
Dorian Musat ◽  
Ileana Nicoleta Popescu ◽  
Maria Cristiana Enescu

Abstract This paper presents solutions and the equipment for preheating combustion air from scrap aluminum melting furnaces through flue gas heat recovery. For sizing convection pre-heaters, there has been developed a mathematical model which has been transcribed into a computer program in C + +. A constructive version of the pre-heater was drawn up and a recovery heat exchanger was manufactured and mounted on an aluminum melting furnace. Both the functional parameters values and the reasons causing the pre-heater worning out, as well as the steps taken for sizing and the achievement of a new air pre-heater able to bear the operating conditions of the aluminum melting furnace are shown.


2002 ◽  
Vol 11 (2) ◽  
pp. 144-147 ◽  
Author(s):  
Li Jia ◽  
Xiaoping Li ◽  
Jindong Sun ◽  
Xiaofeng Peng

Sign in / Sign up

Export Citation Format

Share Document