Heat Recovery in Difficult "Polluted Flue Gas Applications" in Waste to Energy Systems

Author(s):  
Petr Stehlik ◽  
Vojtech Turek ◽  
Zdenek Jegla ◽  
Bohuslav Kilkovsky
Author(s):  
Richard F. Abrams ◽  
Robert Faia

Babcock Power Environmental (BPE), a Babcock Power Inc. company, has developed a new, innovative, high-efficiency NOx reduction technology designed to greatly reduce the NOx emissions from waste to energy (WTE) boilers at relatively low cost. This “tail-end” system uses Selective Catalytic Reduction (SCR) to achieve the high reduction performance. Conventional SCR catalyst cannot be used in the traditional “high-dust” location, downstream of the economizer because constituents in the ash would poison the catalyst quickly, rendering it useless. Thus, the Regenerative Selective Catalytic Reduction (RSCR®) system is designed to operate at the end of the plant before the flue gas is discharged to the stack. The process utilizes a reactant (usually aqueous ammonia) to be added to the flue gas stream upstream of the RSCR to reduce NOx to harmless reaction products, N2 and H2O. The RSCR combines the efficient heat recovery, temperature control, reactant mixing, and catalyst into a single unit and provides the maximum NOx reduction and heat recovery practical. The paper will describe the overall predicted performance of a typical WTE boiler plant using this new technology. The paper will also provide actual operating data on the RSCR, which has been retrofitted to four biomass-fired units.


2002 ◽  
Author(s):  
Masahiro Osakabe ◽  
Sachiyo Horiki ◽  
Tsugue Itoh ◽  
Ikuya Haze

2021 ◽  
Vol 22 ◽  
pp. 100839
Author(s):  
Chunhua Min ◽  
Xuguang Yang ◽  
Jing He ◽  
Kun Wang ◽  
Liyao Xie ◽  
...  

2019 ◽  
Vol 150 ◽  
pp. 200-209 ◽  
Author(s):  
Min Yan ◽  
Chunyuan Ma ◽  
Qiuwan Shen ◽  
Zhanlong Song ◽  
Jingcai Chang

Vestnik MEI ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 11-19
Author(s):  
Anton N. Efremov ◽  
◽  
Aleksey A. Dudolin ◽  

The existing method for selecting the structure of a power plant for thermally recycling municipal solid waste (MSW) in the Russian Federation does not address the matter of selecting all components of an energy complex operating on MSW, but places focus on determining the best accessible waste thermal neutralization technology. This generates the need to search for new methods and to select criteria of choosing the structure for each particular project. A comparative analysis of various structural schemes of waste-to-energy plants widely used outside of Russia will make it possible to reveal their main advantages and drawbacks, and to determine their application fields. The article describes the statistical indicators characterizing the operation of the flue gas purification system from acid gases, which can be applied in performing a feasibility study, intellectual property assessment, and in carrying out front-end engineering. For waste-to-energy plants constructed in an urban environment and aimed to operate with keeping to a minimum the gross emissions of acid gases into the atmospheric air, the use of a wet reactor system is recommended, which will ensure low emissions of HF, HCl, and SOx. The system with a wet reactor will make it possible to reduce gross emissions of harmful substances during the operation of large capacity waste-to-energy power plants and will be a justified choice in such case. In constructing medium capacity waste-to-energy plants (with a throughput of up to 350 000 t of MSW per annum), semi-dry and dry reactors can be used; for such plants, the technology involving the use of a semi-dry reactor is the most preferred one.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 19 ◽  
Author(s):  
Enhui Sun ◽  
Han Hu ◽  
Hangning Li ◽  
Chao Liu ◽  
Jinliang Xu

It is difficult to recover the residual heat from flue gas when supercritical carbon dioxide (S-CO2) cycle is used for a coal fired power plant, due to the higher CO2 temperature in tail flue and the limited air temperature in air preheater. The combined cycle is helpful for residual heat recovery. Thus, it is important to build an efficient bottom cycle. In this paper, we proposed a novel exergy destruction control strategy during residual heat recovery to equal and minimize the exergy destruction for different bottom cycles. Five bottom cycles are analyzed to identify their differences in thermal efficiencies (ηth,b), and the CO2 temperature entering the bottom cycle heater (T4b) etc. We show that the exergy destruction can be minimized by a suitable pinch temperature between flue gas and CO2 in the heater via adjusting T4b. Among the five bottom cycles, either the recompression cycle (RC) or the partial cooling cycle (PACC) exhibits good performance. The power generation efficiency is 47.04% when the vapor parameters of CO2 are 620/30 MPa, with the double-reheating-recompression cycle as the top cycle, and RC as the bottom cycle. Such efficiency is higher than that of the supercritical water cycle power plant.


Sign in / Sign up

Export Citation Format

Share Document