scholarly journals Robot Kinematics and Dynamics

2021 ◽  
pp. 235-246
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Hong Jun Li ◽  
Wei Jiang ◽  
Yu Yan ◽  
An Zhang ◽  
Gan Zuo

In response to the problems of high labor intensity, high risk, and poor reliability of artificial live working, a four-wheel-driven spacer bar replacement mobile operation robot has been designed and developed in this paper, and the corresponding kinematic and dynamics model have been established, based on the established double models, the kinematics and dynamics numerical analysis can be realized through INVENTOR and ADAMS, respectively, based on the established kinematics and dynamics models . The results show that the simulation value of the robot joint displacement, velocity, acceleration, and joint force can be able to meet the requirements of kinematic and dynamic constraints during the robot operation. The robot prototype can meet the requirement of dual-split robot working space and the operation joint force control, which not only extend the robot adaptability to the multisplit lines heterogeneous operation environment but also provide an important theoretical technical support for the exploit of the robot physical prototype. Through the robot kinematics and dynamics analysis, the robot mechanical structure parameters and electrical control parameters have been effectively optimized. The weight and cost of the robot have been reduced by 12% and 15% compared to the existed studies. Finally, the robot principle prototype mobile platform has been developed, and the correctness of robot kinematics and dynamics simulation analysis has been verified through the robot principle prototype mobile platform.


2013 ◽  
Vol 319 ◽  
pp. 385-392 ◽  
Author(s):  
Michał Ciszewski ◽  
Tomasz Buratowski ◽  
Mariusz Giergiel ◽  
Krzysztof Kurc ◽  
Piotr Małka

In this paper, the design of a tracked in-pipe inspection mobile robot with a flexible drive positioning system is presented. The robot would be able to operate in circular and rectangular pipes and ducts, oriented horizontally and vertically with cross section greater than 200 mm. The paper presents a complete design process of a virtual prototype, with usage of CAD/CAE software. Mathematical descriptions of the robot kinematics and dynamics that aim on development of a control system are presented. Laboratory tests of the utilized tracks are included. Performed tests proved conformity of the design with stated requirements, therefore a prototype will be manufactured basing on the project.


Author(s):  
Robert L. Williams

This paper details some innovations developed at Ohio University for augmenting the teaching and learning of mechanism kinematics and dynamics, robot kinematics, dynamics, and control, and the musculoskeletal biomechanics of human motion. Common to all three courses are NotesBooks, significant MATLAB use in class, homework, and projects, term projects simulated from real-world applications, and Internet resources developed and hosted by the author at Ohio University.


Author(s):  
Bassel Kaddar ◽  
Yannick Aoustin ◽  
Christine Chevallereau

A walking gait is designed for a planar biped with two identical three-link legs, a trunk and two one-link arms. This nine-link biped is controlled via eight torques to obtain one step of a cyclic gait. The scope of this paper is to investigate the effects of arms swing on the energy consumption during walking of a fully actuated planar biped robot. Kinematics and dynamics of a biped, HYDROID, are used for this study. Desired gaits are considered to be cyclic having single support phases separated by flat foot impacts. Different evolutions of the arms: arms held, arms bound and arms swing are compared. For each case, we use a parametric optimization method with constraints to produce reference cyclic trajectories according to an energy criterion. The numerical results show that this criterion is lower in the case where the arms swing.


2014 ◽  
Vol 983 ◽  
pp. 379-382
Author(s):  
Jia Shun Shi ◽  
Shuang Wang ◽  
Li Da Zhu ◽  
Wan Shan Wang ◽  
Tian Biao Yu

The paper aims at the questions of electromotor selection and mechanism design, which is effectively solved by the virtual prototype technology. Firstly, the three-dimensional model of hybrid machine tool is built by using SolidWorks software. Secondly, the assembled model is channeled into ADAMS/View, and then formed the virtual prototype simulation model with mute-body dynamics. Velocity and driving force curve of each driving shaft is got by analyzing the kinematics and dynamics of the hybrid machine tool. Maximum velocity and maximum driving force each driving shaft can find out by the method of space search. Therefore, the kinematics and dynamics properties of 3-TPS hybrid machine tool is obtained, which provide proof for machine electromotor selection, framework design and control system design. Key words: Hybrid robot; Kinematics; Dynamics; ADAMS; Simulation


Author(s):  
Clemens Mandl ◽  
Xiaolong Feng ◽  
Johan O¨lvander

In this work, a methodology and an integrated tool framework has been developed for automated design of an industrial robot family consisting of four robot members. For each robot, performance requirements concerning payloads, reaches, and time performances are specified. A 3D design tool, namely SolidWorks, has been integrated with robot kinematics and dynamics simulation tools for simultaneous kinematics and dynamics design. A motor library comprising both geometric data and physical data has also been integrated in the tool framework. The automated design of the robot family has been formulated as a multi-objective and mixed variable design optimization problem. The arm modules are treated as continuous design variables while the motors are treated as discrete variables. Due to the characteristics of this mixed variable design optimization problem a genetic algorithm (GA) has been used. This work has successfully demonstrated the feasibility for achieving automatic design of an industrial robot family.


Sign in / Sign up

Export Citation Format

Share Document