Production and Inventory Planning for Stock Preparation in the Tissue Paper Industry

2011 ◽  
pp. 237-268
Author(s):  
Joakim Westerlund ◽  
Mattias Hästbacka ◽  
Jarkko Kaplin ◽  
Tapio Westerlund
2014 ◽  
pp. 237-268
Author(s):  
Joakim Westerlund ◽  
Mattias Hästbacka ◽  
Jarkko Kaplin ◽  
Tapio Westerlund

Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 261
Author(s):  
Michele Gabrio Antonelli ◽  
Pierluigi Beomonte Zobel ◽  
Massimiliano Centofanti ◽  
Stefano Colaiuda

The final quality of tissue paper depends on the parameters of the continuous transformation process and maintenance of rolls of a tissue paper machine. For a better quality, outer surfaces of the rolls must always be clean, and their roughness should be maintained in the same way. A Doctor Blade provides for such requirements. Our work is focused on the development of a pneumatic oscillator that moves a Doctor Blade in order to scrape the outer surfaces of the rolls. It is based on a low-friction double-effect cylinder with a through-rod. The integration of two limit switch valves, one for each head of the cylinder, and a smart pneumatic circuit to obtain a very low speed of the piston at constant load, represents the novelty of the proposed device. The piston of the cylinder allows for alternatively switching the limit switches that command the 5/2 air-operated pilot valve of the cylinder. The oscillator’s design, pneumatic circuit, and working principle are detailed. Experimental tests on the conceived limit switch and on the first prototype of the pneumatic oscillator validated the effectiveness of the proposed solution, the technical feasibility of the device, and the absence of stick-slip during the oscillatory motion at low speed.


2019 ◽  
Vol 29 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Armando I. Vázquez ◽  
Carlos Gerónimo ◽  
Ignacio González ◽  
Roel Cruz ◽  
María I. Lázaro ◽  
...  

2017 ◽  
Vol 62 (2) ◽  
pp. 195-209 ◽  
Author(s):  
Richard Lee Neitzel ◽  
Marianne Andersson ◽  
Helena Eriksson ◽  
Kjell Torén ◽  
Eva Andersson

Abstract Objectives Noise exposure is a common occupational hazard, but has not been sufficiently characterized in paper mills. We developed a job-exposure matrix (JEM) for noise exposure for use in estimating exposures among Swedish soft tissue paper mill workers. Methods We used a combination of area and personal dosimetry noise exposure measurements made at four soft tissue paper mills by industry and research staff between 1977 and 2013 to estimate noise exposures by department, location, and job title. We then utilized these estimates, in conjunction with information on process and facility changes and use of hearing protection collected via focus groups, to create a seven-category, semi-quantitative JEM for all departments, locations, and job titles spanning the years 1940–2010. Results The results of the 1157 area and personal dosimetry noise measurements indicated that noise levels have generally declined in Swedish paper mills over time, though these changes have been neither uniform nor monotonic within or across the four mills. Focus group results indicated that use of hearing protection has generally increased over time. The noise JEM totals 1917 cells, with each cell representing a unique combination of operation, job title, and single year. We estimated that ~50% of workers at the four mills assessed were exposed at or above the Swedish 8-h average noise exposure limit of an 85 dBA at the conclusion of the study period in 2010. Conclusions Our results highlight the continuing need for hearing loss prevention and noise control efforts at these and similar mills, and the completed JEM now represents a tool for use in epidemiological studies of noise-related health outcomes.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (6) ◽  
pp. 19-24
Author(s):  
TROY RUNGE ◽  
CHUNHUI ZHANG

Agricultural residues and energy crops are promising resources that can be utilized in the pulp and paper industry. This study examines the potential of co-cooking nonwood materials with hardwoods as means to incorporate nonwood material into a paper furnish. Specifically, miscanthus, switchgrass, and corn stover were substituted for poplar hardwood chips in the amounts of 10 wt %, 20 wt %, and 30 wt %, and the blends were subjected to kraft pulping experiments. The pulps were then bleached with an OD(EP)D sequence and then refined and formed into handsheets to characterize their physical properties. Surprisingly, all three co-cooked pulps showed improved strength properties (up to 35%). Sugar measurement of the pulps by high-performance liquid chromatography suggested that the strength increase correlated with enriched xylan content.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (7) ◽  
pp. 467-477
Author(s):  
PASI NIEMELAINEN ◽  
MARTTI PULLIAINEN ◽  
JARMO KAHALA ◽  
SAMPO LUUKKAINEN

Black liquor high solids (about 80%) concentrators have often been found to suffer from aggressive corrosion. In particular, the first and second effect bodies are susceptible to corrosion attacks resulting in tube leaks and wall thinning, which limit the availability and lifetime of evaporator lines. Corrosion dynamics and construction materials have been studied extensively within the pulp and paper industry to understand the corrosion process. However, it has been challenging to identify root causes for corrosion, which has limited proactive measures to minimize corrosion damage. Corrosion of the first phase concentrator was studied by defining the potential regions for passive area, stress corrosion cracking, pitting corrosion, and general corrosion. This was achieved by using a technique called polarization scan that reveals ranges for the passive area in which the equipment is naturally protected against corrosion. The open circuit potential, also known as corrosion potential, and linear polarization resistance of the metal were monitored online, which allowed for definition of corrosion risks for stainless steel 304L and duplex stainless steels 2205 and SAF 2906. An online temperature measurement added insight to the analysis. A process diagnostics tool was used to identify root causes of the corrosion attacks. Many of the root causes were related to process conditions triggering corrosion. Once the metal surface was activated, it was difficult to repassivate the metal naturally unless a sufficient potential range was reached.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 679-689
Author(s):  
CYDNEY RECHTIN ◽  
CHITTA RANJAN ◽  
ANTHONY LEWIS ◽  
BETH ANN ZARKO

Packaging manufacturers are challenged to achieve consistent strength targets and maximize production while reducing costs through smarter fiber utilization, chemical optimization, energy reduction, and more. With innovative instrumentation readily accessible, mills are collecting vast amounts of data that provide them with ever increasing visibility into their processes. Turning this visibility into actionable insight is key to successfully exceeding customer expectations and reducing costs. Predictive analytics supported by machine learning can provide real-time quality measures that remain robust and accurate in the face of changing machine conditions. These adaptive quality “soft sensors” allow for more informed, on-the-fly process changes; fast change detection; and process control optimization without requiring periodic model tuning. The use of predictive modeling in the paper industry has increased in recent years; however, little attention has been given to packaging finished quality. The use of machine learning to maintain prediction relevancy under everchanging machine conditions is novel. In this paper, we demonstrate the process of establishing real-time, adaptive quality predictions in an industry focused on reel-to-reel quality control, and we discuss the value created through the availability and use of real-time critical quality.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (11) ◽  
pp. 611-617
Author(s):  
Sabrina Burkhardt

The traditional kappa number method was developed in 1960 as a way to more quickly determine the level of lignin remaining in a completed or in-progress pulp. A significantly faster approach than the Klason lignin procedure, the kappa number method is based on the reaction of a strong oxidizing agent (KMnO4) with lignin and small amounts of other organic functional groups present in the pulp, such as hexenuronic acid. While the usefulness of the kappa number for providing information about bleaching requirements and pulp properties has arguably transformed the pulp and paper industry, it has been mostly developed for kraft, sulfite, and soda wood pulps. Nonwood species have a different chemical makeup than hardwood or softwood sources. These chemical differ-ences can influence kappa and Klason measurements on the pulp and lead to wide ranges of error. Both original data from Sustainable Fiber Technologies’ sulfur and chlorine-free pulping process and kappa and Klason data from various nonwood pulp literature sources will be presented to challenge the assumption that the kappa number accurately represents lignin content in nonwood pulps.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (11) ◽  
pp. 731-738 ◽  
Author(s):  
KARITA KINNUNEN-RAUDASKOSKI ◽  
KRISTIAN SALMINEN ◽  
JANI LEHMONEN ◽  
TUOMO HJELT

Production cost savings by lowering basis weight has been a trend in papermaking. The strategy has been to decrease the amount of softwood kraft pulp and increase use of fillers and recycled fibers. These changes have a tendency to lower strength properties of both the wet and dry web. To compensate for the strength loss in the paper, a greater quantity of strength additives is often required, either dosed at the wet end or applied to the wet web by spray. In this pilot-scale study, it was shown how strength additives can be effectively applied with foam-based application technology. The technology can simultaneously increase dryness after wet pressing and enhance dry and wet web strength properties. Foam application of polyvinyl alcohol (PVA), ethylene vinyl alcohol (EVOH), carboxymethyl cellulose (CMC), guar gum, starch, and cellulose microfibrils (CMF) increased web dryness after wet pressing up to 5.2%-units compared to the reference sample. The enhanced dewatering with starch, guar gum, and CMF was detected with a bulk increase. Additionally, a significant increase in z-directional tensile strength of dry web and and in-plane tensile strength properties of wet web was obtained. Based on the results, foam application technology can be a very useful technology for several applications in the paper industry.


Sign in / Sign up

Export Citation Format

Share Document