Exhaust Aftertreatment for Lean‐burn Gasoline Engines*

2021 ◽  
pp. 499-500
Author(s):  
Martin Votsmeier ◽  
Thomas Kreuzer ◽  
Jürgen Gieshoff ◽  
Gerhard Lepperhoff ◽  
Barbara Elvers
Author(s):  
Myoungjin Kim ◽  
Sihun Lee ◽  
Wootae Kim

In-cylinder flows such as tumble and swirl have an important role on the engine combustion efficiencies and emission formations. In particular, the tumble flow, which is dominant in-cylinder flow in current high performance gasoline engines, has an important effect on the fuel consumptions and exhaust emissions under part load conditions. Therefore, it is important to know the effect of the tumble ratio on the part load performance and optimize the tumble ratio of a gasoline engine for better fuel economy and exhaust emissions. First step in optimizing a tumble flow is to measure a tumble ratio accurately. In this research the tumble flow was measured, compared and correlated using three different measurement methods: steady flow rig, 2-Dimensional PIV, and 3-Dimensional PTV. Engine dynamometer test was performed to find out the effect of the tumble ratio on the part load performance. Dynamometer test results of high tumble ratio engine showed faster combustion speed, retarded MBT timing, higher exhaust emissions, and a better lean burn combustion stability. Lean limit of the baseline engine was expanded from A/F=18:1 to A/F=21:1 by increasing a tumble ratio using MTV.


Author(s):  
Dakota Strange ◽  
Pingen Chen ◽  
Vitaly Y. Prikhodko ◽  
James E. Parks

Passive selective catalytic reduction (SCR) has emerged as a promising NOx reduction technology for highly-efficient lean-burn gasoline engines to meet stringent NOx emission regulation in a cost-effective manner. In this study, a prototype passive SCR which includes an upstream three-way catalyst (TWC) with added NOx storage component, and a downstream urealess SCR catalyst, was investigated. Engine experiments were conducted to investigate and quantify the dynamic NOx storage/release behaviors as well as dynamic NH3 generation behavior on the new TWC with added NOx storage component. Then, the lean/rich mode-switching timing control was optimized to minimize the fuel penalty associated with passive SCR operation. Simulation results show that, compared to the baseline mode-switching timing control, the optimized control can reduce the passive SCR-related fuel penalty by 6.7%. Such an optimized mode-switching timing control strategy is rather instrumental in realizing significant fuel efficiency benefits for lean-burn gasoline engines coupled with cost-effective passive SCR systems.


Author(s):  
Shahin Tasoujian ◽  
Behrouz Ebrahimi ◽  
Karolos Grigoriadis ◽  
Matthew Franchek

Dynamic systems with time-varying delay in the control input are studied in the present paper. The delay is considered as a varying parameter and Padé approximation is applied to transfer the infinite-dimensional delay problem into a finite-dimensional paradigm represented in the form of a non-minimum phase system (NMP). Inherited delay characteristics are now represented through unstable internal dynamics for the NMP system, which poses restrictions on the achievable control bandwidth thereby resulting in an imperfect tracking performance and poor stability condition. Presented in this paper, is a methodical parameter-varying loop-shaping control design approach, which simultaneously satisfy a variety of control requirements and offer an insight into the limitations posed by the NMP representation. The suggested method is then applied to fueling control in lean-burn gasoline engines addressing the varying transport and combustion delay. The developed approach is validated with experimental data on a Ford F-150 truck SI lean-burn engine with large time-varying delay in the control loop and the closed-loop system responses are presented to demonstrate disturbance rejection, measurement noise attenuation, and robustness properties against delay estimation errors.


Sign in / Sign up

Export Citation Format

Share Document