Photogeneration of Charge Carriers in Solution-Processable Organic Semiconductors

Author(s):  
Heinz Bässler ◽  
Anna Köhler
2021 ◽  
Vol 278 ◽  
pp. 116830
Author(s):  
Hanan Alzahrani ◽  
Khaulah Sulaiman ◽  
Alaa Y. Mahmoud ◽  
Rabab R. Bahabry

2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


2020 ◽  
Vol 11 (46) ◽  
pp. 12493-12505
Author(s):  
Satoru Inoue ◽  
Toshiki Higashino ◽  
Shunto Arai ◽  
Reiji Kumai ◽  
Hiroyuki Matsui ◽  
...  

An isomorphous bilayer-type layered herringbone crystal packing is reported for a series of four positional isomers of mono-C8-BTNTs, where the single-crystal devices with the isomers exhibit high-performance TFT characteristics.


ChemInform ◽  
2008 ◽  
Vol 39 (30) ◽  
Author(s):  
Sybille Allard ◽  
Michael Forster ◽  
Benjamin Souharce ◽  
Heiko Thiem ◽  
Ullrich Scherf

2020 ◽  
Author(s):  
Chuanding Dong ◽  
Stefan Schumacher

<p>The mechanistic study of molecular doping of organic semiconductors (OSC) requires</p><p>an improved understanding of the role and formation of integer charge transfer complexes</p><p>(ICTC) on a microscopic level. In the present work we go one crucial step beyond</p><p>the simplest scenario of an isolated bi-molecular ICTC and study ICTCs formed of</p><p>up to two (poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b,3,4-b”]dithiophene)-alt-4,7-(2,1,3-</p><p>benzothiadiazole)](PCPDT-BT) oligomers and up to two CN6-CP molecules. We find that depending</p><p>on geometric arrangement, complexes containing two conjugated oligomers and two</p><p>dopant molecules can show p-type doping with double integer charge transfer, resulting in either</p><p>two singly doped oligomers or one doubly doped oligomer. Interestingly, compared to an individual</p><p>oligomer-dopant complex, the resulting in-gap states on the doped oligomers are significantly</p><p>lowered in energy. Indicating that, already in the relatively small systems studied here, Coulomb</p><p>binding of the doping-induced positive charge to the counter-ion is reduced which is an elemental</p><p>step towards generating mobile charge carriers through molecular doping.</p>


2020 ◽  
Author(s):  
Chuanding Dong ◽  
Stefan Schumacher

<p>The mechanistic study of molecular doping of organic semiconductors (OSC) requires</p><p>an improved understanding of the role and formation of integer charge transfer complexes</p><p>(ICTC) on a microscopic level. In the present work we go one crucial step beyond</p><p>the simplest scenario of an isolated bi-molecular ICTC and study ICTCs formed of</p><p>up to two (poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b,3,4-b”]dithiophene)-alt-4,7-(2,1,3-</p><p>benzothiadiazole)](PCPDT-BT) oligomers and up to two CN6-CP molecules. We find that depending</p><p>on geometric arrangement, complexes containing two conjugated oligomers and two</p><p>dopant molecules can show p-type doping with double integer charge transfer, resulting in either</p><p>two singly doped oligomers or one doubly doped oligomer. Interestingly, compared to an individual</p><p>oligomer-dopant complex, the resulting in-gap states on the doped oligomers are significantly</p><p>lowered in energy. Indicating that, already in the relatively small systems studied here, Coulomb</p><p>binding of the doping-induced positive charge to the counter-ion is reduced which is an elemental</p><p>step towards generating mobile charge carriers through molecular doping.</p>


Sign in / Sign up

Export Citation Format

Share Document