Electrochemical Carbon Dioxide Reduction Reaction

2022 ◽  
pp. 159-182
Author(s):  
Yating Zhu ◽  
Congyong Wang ◽  
Zengqiang Gao ◽  
Junjun Li ◽  
Zhicheng Zhang
2020 ◽  
Vol 22 (16) ◽  
pp. 9040-9045
Author(s):  
Brian A. Rohr ◽  
Aayush R. Singh ◽  
Joseph A. Gauthier ◽  
Michael J. Statt ◽  
Jens K. Nørskov

Theoretical modeling indicates that proton donor concentration and catalyst geometry control the selectivity to multicarbon products in the electrochemical carbon dioxide reduction reaction.


Author(s):  
Zuoyu Yan ◽  
Xiuxiu Wang ◽  
Yang Tan ◽  
Aihua Liu ◽  
Fenqiang Luo ◽  
...  

Metals and their alloys based electrocatalysts continue to attract great attention for electrochemical carbon dioxide reduction reaction (CO2RR). Herein, cuprous oxide (Cu2O) supported on N-doped flexible roughed graphite paper (NGP)...


Author(s):  
Rajasekaran Elakkiya ◽  
Govindhan Maduraiveeran

Design of high-performance and Earth-abundant electrocatalysts for electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) into fuels and value-added chemicals offers an emergent pathway for environment and energy sustainable concerns. Herein,...


Author(s):  
Haoyue Zhang ◽  
Fang Song

Electrocatalysts are essential for the widespread of promising electrochemical energy conversion/storage technologies, where oxygen reduction/evolution reaction (ORR/OER), hydrogen evolution reaction (HER), and carbon dioxide reduction reaction (CRR) are intensively involved....


2018 ◽  
Vol 31 (31) ◽  
pp. 1805617 ◽  
Author(s):  
Cheonghee Kim ◽  
Fabio Dionigi ◽  
Vera Beermann ◽  
Xingli Wang ◽  
Tim Möller ◽  
...  

2020 ◽  
Vol 8 (31) ◽  
pp. 15936-15941 ◽  
Author(s):  
Pengda An ◽  
Lai Wei ◽  
Huangjingwei Li ◽  
Baopeng Yang ◽  
Kang Liu ◽  
...  

Enhanced carbon dioxide reduction reaction (CO2RR) with suppressed HER was achieved on polytetrafluoroethylene (PTFE) coated Cu nanoneedles (CuNNs).


ChemSusChem ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5620-5624
Author(s):  
Natarajan Saravanan ◽  
Mani Balamurugan ◽  
K. S. Shalini Devi ◽  
Ki Tae Nam ◽  
Annamalai Senthil Kumar

2020 ◽  
Vol 44 (27) ◽  
pp. 11824-11828 ◽  
Author(s):  
Tingting Zhao ◽  
Yu Tian ◽  
Likai Yan ◽  
Zhongmin Su

Converting CO2 into useful fuels and chemicals offers a promising strategy for mitigating the issues of energy crisis and global warming.


2021 ◽  
Author(s):  
Mohammadreza Esmaeilirad ◽  
Artem Baskin ◽  
Alireza Kondori ◽  
Ana Sanz Matias ◽  
Jin Qian ◽  
...  

Abstract An overarching challenge of the electrochemical carbon dioxide reduction reaction (eCO2RR) is finding an earth-abundant, highly active catalyst that selectively produces hydrocarbons at relatively low overpotentials. Here, we have studied the two-dimensional transition metal carbide (TMC) class of materials and found that di-tungsten carbide (W2C) nanoflakes exhibit maximum methane (CH4) current density of -421.63 mA/cm2 and a CH4 faradic efficiency of 82.7%±2% in a hybrid electrolyte of 3 M potassium hydroxide (KOH) and 2 M choline-chloride (CC). Powered by a triple junction photovoltaic cell, we have demonstrated a flow electrolyzer that uses humidified CO2 to produce CH4 in a 700-hours process under one sun illumination with a CO2RR energy efficiency of about 62.3% and a solar-to-fuel efficiency of 20.7%. Density functional theory (DFT) calculations reveal that dissociation of water, chemisorption of CO2 and cleavage of the C-O bond – the most energy consuming elementary steps in other catalysts such as copper – become nearly spontaneous at the W2C surface. This results in instantaneous formation of adsorbed CO – an important reaction intermediate – and an unlimited source of protons near the tungsten surface sites that are the main reasons for the observed superior activity, selectivity, and small potential.


Sign in / Sign up

Export Citation Format

Share Document