Effects of Muscle Strength Training on Muscle Mass Gain and Hypertrophy in Older Adults With Osteoarthritis: A Systematic Review and Meta‐Analysis

2020 ◽  
Vol 72 (12) ◽  
pp. 1703-1718 ◽  
Author(s):  
Chun‐De Liao ◽  
Hung‐Chou Chen ◽  
Yu‐Chi Kuo ◽  
Jau‐Yih Tsauo ◽  
Shih‐Wei Huang ◽  
...  
Author(s):  
Shuang Wu ◽  
Hong-Ting Ning ◽  
Su-Mei Xiao ◽  
Ming-Yue Hu ◽  
Xin-Yin Wu ◽  
...  

Abstract Background Sarcopenia, a progressive loss of muscle mass and function with advancing age, is a prevalent condition among older adults. As most older people are too frail to do intensive exercise and vibration therapy has low risk and ease of participation, it may be more readily accepted by elderly individuals. However, it remains unclear whether vibration therapy would be effective among older adults with sarcopenia. This systematic review and meta-analysis examined the effect of vibration therapy including local vibration therapy and whole-body vibration therapy, for enhancing muscle mass, muscle strength and physical function in older people with sarcopenia. Methods A systematic literature search was conducted in March 2019 in the following 5 electronic databases: PubMed, CINAHL, Embase, PEDro, and the Cochrane Central Register of Controlled Trials, with no restriction of language or the year of publication. Randomized controlled trials and quasi-experimental studies examining effects of vibration therapy on muscle mass, muscle strength or physical function in older adults with sarcopenia were included in this systematic review. Two reviewers independently assessed the methodological quality of the selected studies. Results Of the 1972 identified studies, seven publications from six studies involving 223 participants were included in this systematic review. Five of them conducted whole-body vibration therapy, while two conducted local vibration therapy. A meta-analysis of randomized controlled studies indicated that muscle strength significantly increased after whole-body vibration therapy (SMD 0.69, 95% CI 0.28 to 1.11, I2 = 0%, P = 0.001) and local vibration therapy (SMD 3.78, 95% CI 2.29 to 5.28, P < 0.001). Physical performance measured by the sit-to-stand test and the timed-up-and-go test were significantly improved after the intervention (SMD -0.79, 95% CI − 1.21 to − 0.37, I2 = 0%, P < 0.001) and SMD -0.83, 95% CI − 1.56 to − 0.11, I2 = 64%, P = 0.02, respectively). Conclusion Vibration therapy could be a prospective strategy for improving muscle strength and physical performance in older adults with sarcopenia. However, due to the limited number of the included studies, caution is needed when interpreting these results. More well-designed, large sample size studies should be conducted to further explore and validate the benefits of vibration therapy for this population.


2020 ◽  
Vol 11 (4) ◽  
pp. 863
Author(s):  
Wangxiao Bao ◽  
Yun Sun ◽  
Tianfang Zhang ◽  
Liliang Zou ◽  
Xiaohong Wu ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
MoonKi Choi ◽  
Hayeon Kim ◽  
Juyeon Bae

Abstract Background Health-promoting interventions are important for preventing frailty and sarcopenia in older adults. However, there is limited evidence that nutritional interventions yield additional effects when combined with resistance training. This systematic review and meta-analysis aimed to compare the effectiveness of nutritional interventions with resistance training and that of resistance training alone. Methods Randomized controlled trials published in peer-reviewed journals prior to July 2020 were retrieved from databases and other sources. The articles were screened according to the inclusion and exclusion criteria. The methodological quality of the included studies was assessed using Cochrane’s risk of bias tool 2. A meta-analysis was performed using the RevMan 5.4 program and STATA 16 program. Results A total of 22 studies were included in the meta-analysis. The results of the meta-analysis showed no significant differences between groups in muscle mass, muscle strength, or physical functional performance. In the subgroup analysis regarding the types of nutritional interventions, creatine showed significant effects on lean body mass (n = 4, MD 2.61, 95% CI 0.51 to 4.72). Regarding the other subgroup analyses, there were no significant differences in appendicular skeletal muscle mass (p = .43), hand grip strength (p = .73), knee extension strength (p = .09), chair stand test results (p = .31), or timed up-and-go test results (p = .31). In the meta-regression, moderators such as the mean age of subjects and duration of interventions were not associated with outcome variables. Conclusions This meta-analysis showed that nutritional interventions with resistance training have no additional effect on body composition, muscle strength, or physical function. Only creatine showed synergistic effects with resistance training on muscle mass. Trial registration CRD42021224843.


2021 ◽  
pp. 111461
Author(s):  
Felipe M. de Santana ◽  
Melissa O. Premaor ◽  
Nicolas Y. Tanigava ◽  
Rosa M.R. Pereira

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2820
Author(s):  
Julie Mareschal ◽  
Laurence Genton ◽  
Tinh-Hai Collet ◽  
Christophe Graf

Aging is a global public health concern. From the age of 50, muscle mass, muscle strength and physical performance tend to decline. Sarcopenia and frailty are frequent in community-dwelling older adults and are associated with negative outcomes such as physical disability and mortality. Therefore, the identification of therapeutic strategies to prevent and fight sarcopenia and frailty is of great interest. This systematic review aims to summarize the impact of nutritional interventions alone or combined with other treatment(s) in older community-dwelling adults on (1) the three indicators of sarcopenia, i.e., muscle mass, muscle strength and physical performance; and (2) the hospitalization and readmission rates. The literature search was performed on Medline and included studies published between January 2010 and June 2020. We included randomized controlled trials of nutritional intervention alone or combined with other treatment(s) in community-living subjects aged 65 or older. In total, 28 articles were retained in the final analysis. This systematic review highlights the importance of a multimodal approach, including at least a combined nutritional and exercise intervention, to improve muscle mass, muscle strength and physical performance, in community-dwelling older adults but especially in frail and sarcopenic subjects. Regarding hospitalization and readmission rate, data were limited and inconclusive. Future studies should continue to investigate the effects of such interventions in this population.


Author(s):  
Darío Rodrigo-Mallorca ◽  
Andrés Felipe Loaiza-Betancur ◽  
Pablo Monteagudo ◽  
Cristina Blasco-Lafarga ◽  
Iván Chulvi-Medrano

Low-intensity training with blood flow restriction (LI-BFR) has been suggested as an alternative to high-intensity resistance training for the improvement of strength and muscle mass, becoming advisable for individuals who cannot assume such a load. The systematic review aimed to determine the effectiveness of the LI-BFR compared to dynamic high-intensity resistance training on strength and muscle mass in non-active older adults. A systematic review was conducted according to the Cochrane Handbook and reportedly followed the PRISMA statement. MEDLINE, EMBASE, Web of Science Core Collection, and Scopus databases were searched between September and October 2020. Two reviewers independently selected the studies, extracted data, assessed the risk of bias and the quality of evidence using the GRADE approach. Twelve studies were included in the qualitative synthesis. Meta-analysis pointed out significant differences in maximal voluntary contraction (MVC): SMD 0.61, 95% CI [0.10, 1.11], p = 0.02, I2 71% p < 0.0001; but not in the repetition maximum (RM): SMD 0.07, 95% CI [−0.25, 0.40], p = 0.66, I2 0% p < 0.53; neither in the muscle mass: SMD 0.62, 95% CI [−0.09, 1.34], p = 0.09, I2 59% p = 0.05. Despite important limitations such as scarce literature regarding LI-BFR in older adults, the small sample size in most studies, the still differences in methodology and poor quality in many of them, this systematic review and meta-analysis revealed a positive benefit in non-active older adults. LI- BFR may induce increased muscular strength and muscle mass, at least at a similar extent to that in the traditional high-intensity resistance training.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259574
Author(s):  
Leonardo Peterson dos Santos ◽  
Rafaela Cavalheiro do Espírito Santo ◽  
Thiago Rozales Ramis ◽  
Juliana Katarina Schoer Portes ◽  
Rafael Mendonça da Silva Chakr ◽  
...  

Introduction Rheumatoid arthritis(RA) and osteoarthritis(OA) patients showed systemic manifestations that may lead to a reduction in muscle strength, muscle mass and, consequently, to a reduction in functionality. On the other hand, moderate intensity resistance training(MIRT) and high intensity resistance training(HIRT) are able to improve muscle strength and muscle mass in RA and OA without affecting the disease course. However, due to the articular manifestations caused by these diseases, these patients may present intolerance to MIRT or HIRT. Thus, the low intensity resistance training combined with blood flow restriction(LIRTBFR) may be a new training strategy for these populations. Objective To perform a systematic review with meta-analysis to verify the effects of LIRTBFR on muscle strength, muscle mass and functionality in RA and OA patients. Materials and methods A systematic review with meta-analysis of randomized clinical trials(RCTs), published in English, between 1957–2021, was conducted using MEDLINE(PubMed), Embase and Cochrane Library. The methodological quality was assessed using Physiotherapy Evidence Database scale. The risk of bias was assessed using RoB2.0. Mean difference(MD) or standardized mean difference(SMD) and 95% confidence intervals(CI) were pooled using a random-effects model. A P<0.05 was considered statistically significant. Results Five RCTs were included. We found no significant differences in the effects between LIRTBFR, MIRT and HIRT on muscle strength, which was assessed by tests of quadriceps strength(SMD = -0.01[-0.57, 0.54], P = 0.96; I² = 58%) and functionality measured by tests with patterns similar to walking(SMD = -0.04[-0.39, 0.31], P = 0.82; I² = 0%). Compared to HIRT, muscle mass gain after LIRTBFR was reported to be similar. When comparing LIRTBFR with low intensity resistance training without blood flow restriction(LIRT), the effect LIRTBFR was reported to be higher on muscle strength, which was evaluated by the knee extension test. Conclusion LIRTBFR appears to be a promising strategy for gains in muscle strength, muscle mass and functionality in a predominant sample of RA and OA women.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Hye Yun Jeong ◽  
Oran Kwon

AbstractThe decline in skeletal muscle mass and strength, also called sarcopenia, accelerates with age, leading to negative health outcomes and poor quality of life. Diet is important to promote health and plays a key role in muscle aging. Plant-based foods have recently received attention as sources of phytochemical components to attenuate loss of muscle mass and strength in older adults. This systematic review and meta-analysis evaluated the benefits of botanical extracts and their phytochemical compounds for muscle health in older adults. Randomized controlled trials were identified via systematic searches of four electronic databases (PubMed, Cochrane Library, Web of Science, and KoreaMed) up to June 2021 and were quality assessed. The results of muscle strength, mass, and physical performance were pooled using a random-effects model. Fourteen studies involving 528 subjects aged between 50 and 80 years met the inclusion criteria. Dietary phytochemicals significantly increased handgrip strength [0.90 kg; 95% confidence interval (CI) 0.26–1.53, p  =  0.01] and physical performance (timed up-and-go test: − 0.5 s, 2.73 times; 95% CI − 0.84 to − 0.15, p  <  0.01; 30-s chair stand test: 95% CI 0.88–4.59, p  <  0.01; 6-min walk test: 29.36 m; 95% CI 14.58–44.13, p  <  0.0001) but had no effect on improvement in muscle mass. Publication bias evaluated by funnel plots and Egger’s regression test demonstrated no evidence of substantial publication bias (p  >  0.05). The findings of this systematic review and meta-analysis suggest that phytochemicals are a potential nutritional strategy to improve muscle health in older adults.


2020 ◽  
Author(s):  
James Manifield ◽  
Andrew Winnard ◽  
Emily Hume ◽  
Matthew Armstrong ◽  
Katherine Baker ◽  
...  

Abstract Background The ageing process can result in the decrease of respiratory muscle strength and consequently increased work of breathing and associated breathlessness during activities of daily living in older adults. Objective This systematic review and meta-analysis aims to determine the effects of inspiratory muscle training (IMT) in healthy older adults. Methods A systematic literature search was conducted across four databases (Medline/Pubmed, Web of Science, Cochrane Library CINAHL) using a search strategy consisting of both MeSH and text words including older adults, IMT and functional capacity. The eligibility criteria for selecting studies involved controlled trials investigating IMT via resistive or threshold loading in older adults (&gt;60 years) without a long-term condition. Results Seven studies provided mean change scores for inspiratory muscle pressure and three studies for functional capacity. A significant improvement was found for maximal inspiratory pressure (PImax) following training (n = 7, 3.03 [2.44, 3.61], P = &lt;0.00001) but not for functional capacity (n = 3, 2.42 [−1.28, 6.12], P = 0.20). There was no significant correlation between baseline PImax and post-intervention change in PImax values (n = 7, r = 0.342, P = 0.453). Conclusions IMT can be beneficial in terms of improving inspiratory muscle strength in older adults regardless of their initial degree of inspiratory muscle weakness. Further research is required to investigate the effect of IMT on functional capacity and quality of life in older adults.


Sign in / Sign up

Export Citation Format

Share Document