Influence Of Process Stability And Part Positioning On Morphological Properties Of Designed Materials Produced By Laser‐Based Powder Bed Fusion Of Metals On A Multi‐Laser Machine

Author(s):  
Johannes Albert ◽  
Oliver Hermann ◽  
Simon Purschke ◽  
David Rule ◽  
Claudia Fleck
Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1989
Author(s):  
Jonas Grünewald ◽  
Florian Gehringer ◽  
Maximilian Schmöller ◽  
Katrin Wudy

A major factor slowing down the establishment of additive manufacturing processes as production processes is insufficient reproducibility and productivity. Therefore, this work investigates the influence of ring-shaped beam profiles on process stability and productivity in laser-based powder bed fusion of AISI 316L. For this purpose, the weld track geometries of single tracks and multi-track segments with varying laser power, scan speed, hatch distance, and beam profile (Gaussian profile and three different ring-shaped profiles) are analyzed. To evaluate the process robustness, process windows are identified by classifying the generated single tracks into different process categories. The influence of the beam profiles on productivity is studied by analyzing the molten cross-sectional areas and volumes per time. When using ring-shaped beam profiles, the process windows are significantly larger (up to a laser power of 1050 W and a scanning speed of 1700 mm/s) than those of Gaussian beams (laser power up to 450 W and scanning speed up to 1100 mm/s), which suggests a higher process robustness and stability. With ring-shaped beam profiles, larger volumes can be stably melted per track and time. The weld tracks created with ring-shaped profiles are significantly wider than those generated with Gaussian profiles (up to factor 2 within the process window), allowing enlargement of the hatch distances. Due to the higher scanning speeds and the enlarged hatch distances for ring-shaped beam profiles, the process can be accelerated by a factor of approximately 2 in the parameter range investigated.


Procedia CIRP ◽  
2020 ◽  
Vol 95 ◽  
pp. 127-132
Author(s):  
Kai Gutknecht ◽  
Lukas Haferkamp ◽  
Michael Cloots ◽  
Konrad Wegener

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 937
Author(s):  
Hang Zheng ◽  
You Wang ◽  
Yinkai Xie ◽  
Shengkun Yang ◽  
Rui Hou ◽  
...  

Laser powder bed fusion (LPBF) is a promising additive manufacturing technology for producing metal parts with complex geometric features. However, the issue concerning process stability and repeatability still hinders its future acceptance by the industry. Gaining a better understanding of the behavior and stability of the evaporation process is an important step towards further insights into the complex interaction between laser and material. In this study, we used off-axis high-speed camera to observe vapor plume evolution in single-track formation on bare Ti-6Al-4V plates; the results showed that evaporation has a strong effect on melting quality even if the keyhole is not developed. We then expanded the experiments to multi-track level and found that the melting mode can change as the result of heat accumulation. The results show the possibility that keyhole regime may be reached even if it starts with a combination of parameters below the threshold for keyhole formation in single-track-level observation.


2019 ◽  
Author(s):  
Yufan Zhao ◽  
Yuichiro Koizumi ◽  
Kenta Aoyagi ◽  
Daixiu Wei ◽  
Kenta Yamanaka ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


2020 ◽  
Vol 106 (7-8) ◽  
pp. 3367-3379 ◽  
Author(s):  
Shahriar Imani Shahabad ◽  
Zhidong Zhang ◽  
Ali Keshavarzkermani ◽  
Usman Ali ◽  
Yahya Mahmoodkhani ◽  
...  

Author(s):  
Juan S. Gómez Bonilla ◽  
Björn Düsenberg ◽  
Franz Lanyi ◽  
Patrik Schmuki ◽  
Dirk W. Schubert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document