scholarly journals Influence of Ring-Shaped Beam Profiles on Process Stability and Productivity in Laser-Based Powder Bed Fusion of AISI 316L

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1989
Author(s):  
Jonas Grünewald ◽  
Florian Gehringer ◽  
Maximilian Schmöller ◽  
Katrin Wudy

A major factor slowing down the establishment of additive manufacturing processes as production processes is insufficient reproducibility and productivity. Therefore, this work investigates the influence of ring-shaped beam profiles on process stability and productivity in laser-based powder bed fusion of AISI 316L. For this purpose, the weld track geometries of single tracks and multi-track segments with varying laser power, scan speed, hatch distance, and beam profile (Gaussian profile and three different ring-shaped profiles) are analyzed. To evaluate the process robustness, process windows are identified by classifying the generated single tracks into different process categories. The influence of the beam profiles on productivity is studied by analyzing the molten cross-sectional areas and volumes per time. When using ring-shaped beam profiles, the process windows are significantly larger (up to a laser power of 1050 W and a scanning speed of 1700 mm/s) than those of Gaussian beams (laser power up to 450 W and scanning speed up to 1100 mm/s), which suggests a higher process robustness and stability. With ring-shaped beam profiles, larger volumes can be stably melted per track and time. The weld tracks created with ring-shaped profiles are significantly wider than those generated with Gaussian profiles (up to factor 2 within the process window), allowing enlargement of the hatch distances. Due to the higher scanning speeds and the enlarged hatch distances for ring-shaped beam profiles, the process can be accelerated by a factor of approximately 2 in the parameter range investigated.

Author(s):  
Felix Schmeiser ◽  
Erwin Krohmer ◽  
Christian Wagner ◽  
Norbert Schell ◽  
Eckart Uhlmann ◽  
...  

AbstractLaser powder bed fusion is an additive manufacturing process that employs highly focused laser radiation for selective melting of a metal powder bed. This process entails a complex heat flow and thermal management that results in characteristic, often highly textured microstructures, which lead to mechanical anisotropy. In this study, high-energy X-ray diffraction experiments were carried out to illuminate the formation and evolution of microstructural features during LPBF. The nickel-base alloy Inconel 625 was used for in situ experiments using a custom LPBF system designed for these investigations. The diffraction patterns yielded results regarding texture, lattice defects, recrystallization, and chemical segregation. A combination of high laser power and scanning speed results in a strong preferred crystallographic orientation, while low laser power and scanning speed showed no clear texture. The observation of a constant gauge volume revealed solid-state texture changes without remelting. They were related to in situ recrystallization processes caused by the repeated laser scanning. After recrystallization, the formation and growth of segregations were deduced from an increasing diffraction peak asymmetry and confirmed by ex situ scanning transmission electron microscopy. Graphical Abstract


Author(s):  
Sebastian Greco ◽  
Kevin Gutzeit ◽  
Hendrik Hotz ◽  
Marc Schmidt ◽  
Marco Zimmermann ◽  
...  

Abstract The use of additive manufacturing (AM) in industrial applications is steadily increasing due to its near net shape production and high design-freedom. For metallic components, laser-based powder bed fusion (L-PBF) is currently one of the most widely used AM processes. During L-PBF, a component is manufactured layer by layer from a powdery raw material. The process is controlled by a multitude of parameters like the laser power, scanning speed and layer thickness, whose combination significantly influences the properties of the components. In this study, the influence of the L-PBF machine type and the influence of the powder batch are investigated by means of relative density, microhardness and microstructure of the components. For this purpose, three setups are defined, differing in the powder batch and machine type used. By comparing the process results of the additive manufacturing of different setups, the influence of the machine type and powder batch are determined. The considered material is stainless steel AISI 316L. The results revealed significant differences between all investigated properties of the additively manufactured components. Consequently, process parameter combinations cannot be transferred between different machine types and powder batches without verification of the component properties and, if necessary, special adaption of the process.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 165
Author(s):  
Junfeng Li ◽  
Yunxiao Wu ◽  
Bokang Zhou ◽  
Zhengying Wei

Tungsten has been widely used in many industrial fields due to its excellent properties. However, owing to its characteristics of inherent brittleness at room temperature and high melting point, it is difficult to prepare tungsten parts with high complexity via traditional methods. In the present work, tungsten samples were prepared by laser powder bed fusion. The influence of each process parameter including laser power, scanning speed, and hatch spacing on the surface morphology, densification, and microstructure of tungsten samples was systematically investigated. The results showed that the use of the appropriate parameters, especially high laser power, can effectively improve the surface quality and obtain a dense surface. The tungsten samples with a relative density of 98.31% were obtained with optimized parameter combinations: a laser power of 300 W, scanning speed of 400 mm/s, and hatch spacing of 0.08 mm. Compared with scanning speed and hatch spacing, the laser power had a more obvious influence on the relative density. Additionally, for the grain morphology by microstructure inspection, elongated curved grains gradually transformed into fine straight columnar grains as the scanning speed increased. The hatch spacing would change the grain morphology slightly but had no significant effect on the grain size.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2945
Author(s):  
Mohamed Abdelhafiz ◽  
Kassim S. Al-Rubaie ◽  
Ali Emadi ◽  
Mohamed A. Elbestawi

The process–structure–property relationships of copper laser powder bed fusion (L-PBF)-produced parts made of high purity copper powder (99.9 wt %) are examined in this work. A nominal laser beam diameter of 100 μm with a continuous wavelength of 1080 nm was employed. A wide range of process parameters was considered in this study, including five levels of laser power in the range of 200 to 370 W, nine levels of scanning speed from 200 to 700 mm/s, six levels of hatch spacing from 50 to 150 μm, and two layer thickness values of 30 μm and 40 μm. The influence of preheating was also investigated. A maximum relative density of 96% was obtained at a laser power of 370 W, scanning speed of 500 mm/s, and hatch spacing of 100 μm. The results illustrated the significant influence of some parameters such as laser power and hatch spacing on the part quality. In addition, surface integrity was evaluated by surface roughness measurements, where the optimum Ra was measured at 8 μm ± 0.5 μm. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) were performed on the as-built samples to assess the impact of impurities on the L-PBF part characteristics. The highest electrical conductivity recorded for the optimum density-low contaminated coils was 81% IACS.


Author(s):  
Inigo Flores Ituarte ◽  
Olli Wiikinkoski ◽  
Anton Jansson

The use of commodity polymers such as polypropylene (PP) is key to open new market segments and applications for the additive manufacturing industry. Technologies such as powder-bed fusion (PBF) can process PP powder; however, much is still to learn concerning process parameters for reliable manufacturing. This study focusses in the process-property relationships of PP using laser-based PBF. The research presents an overview of the intrinsic and the extrinsic characteristic of a commercial PP powder as well as fabrication of tensile specimens with varying process parameters to characterize tensile, elongation at break, and porosity properties. The impact of key process parameters, such as power and scanning speed are systematically modified in a controlled design of experiment. The results were compared to the existing body of knowledge; the outcome is to present a process window and optimal process parameters for industrial use of PP. The computer tomography data revealed a highly porous structure inside specimens ranging between 8.46% and 10.08%, with porosity concentrated in the interlayer planes in the build direction. The results of the design of experiment for this commercial material show a narrow window of 0.122 ≥ Ev ≥ 0.138 J/mm3 led to increased mechanical properties while maintaining geometrical stability.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1293 ◽  
Author(s):  
Iñigo Flores Ituarte ◽  
Olli Wiikinkoski ◽  
Anton Jansson

The use of commodity polymers such as polypropylene (PP) is key to open new market segments and applications for the additive manufacturing industry. Technologies such as powder-bed fusion (PBF) can process PP powder; however, much is still to learn concerning process parameters for reliable manufacturing. This study focusses in the process–property relationships of PP using laser-based PBF. The research presents an overview of the intrinsic and the extrinsic characteristic of a commercial PP powder as well as fabrication of tensile specimens with varying process parameters to characterize tensile, elongation at break, and porosity properties. The impact of key process parameters, such as power and scanning speed, are systematically modified in a controlled design of experiment. The results were compared to the existing body of knowledge; the outcome is to present a process window and optimal process parameters for industrial use of PP. The computer tomography data revealed a highly porous structure inside specimens ranging between 8.46% and 10.08%, with porosity concentrated in the interlayer planes in the build direction. The results of the design of experiment for this commercial material show a narrow window of 0.122 ≥ Ev ≥ 0.138 J/mm3 led to increased mechanical properties while maintaining geometrical stability.


2019 ◽  
Vol 3 (1) ◽  
pp. 21 ◽  
Author(s):  
Morgan Letenneur ◽  
Alena Kreitcberg ◽  
Vladimir Brailovski

A simplified analytical model of the laser powder bed fusion (LPBF) process was used to develop a novel density prediction approach that can be adapted for any given powder feedstock and LPBF system. First, calibration coupons were built using IN625, Ti64 and Fe powders and a specific LPBF system. These coupons were manufactured using the predetermined ranges of laser power, scanning speed, hatching space, and layer thickness, and their densities were measured using conventional material characterization techniques. Next, a simplified melt pool model was used to calculate the melt pool dimensions for the selected sets of printing parameters. Both sets of data were then combined to predict the density of printed parts. This approach was additionally validated using the literature data on AlSi10Mg and 316L alloys, thus demonstrating that it can reliably be used to optimize the laser powder bed metal fusion process.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
You-Cheng Chang ◽  
Hong-Chuong Tran ◽  
Yu-Lung Lo

Purpose Laser powder bed fusion (LPBF) provides the means to produce unique components with almost no restriction on geometry in an extremely short time. However, the high-temperature gradient and high cooling rate produced during the fabrication process result in residual stress, which may prompt part warpage, cracks or even baseplate separation. Accordingly, an appropriate selection of the LPBF processing parameters is essential to ensure the quality of the built part. This study, thus, aims to develop an integrated simulation framework consisting of a single-track heat transfer model and a modified inherent shrinkage method model for predicting the curvature of an Inconel 718 cantilever beam produced using the LPBF process. Design/methodology/approach The simulation results for the curvature of the cantilever beam are calibrated via a comparison with the experimental observations. It is shown that the calibration factor required to drive the simulation results toward the experimental measurements has the same value for all settings of the laser power and scanning speed. Representative combinations of the laser power and scanning speed are, thus, chosen using the circle packing design method and supplied as inputs to the validated simulation framework to predict the corresponding cantilever beam curvature and density. The simulation results are then used to train artificial neural network models to predict the curvature and solid cooling rate of the cantilever beam for any combination of the laser power and scanning speed within the input design space. The resulting processing maps are screened in accordance with three quality criteria, namely, the part density, the radius of curvature and the solid cooling rate, to determine the optimal processing parameters for the LPBF process. Findings It is shown that the parameters lying within the optimal region of the processing map reduce the curvature of the cantilever beam by 17.9% and improve the density by as much as 99.97%. Originality/value The present study proposes a computational framework, which could find the parameters that not only yield the lowest distortion but also produce fully dense components in the LPBF process.


Author(s):  
J. C. Heigel ◽  
B. M. Lane

This work presents high speed thermographic measurements of the melt pool length during single track laser scans on nickel alloy 625 substrates. Scans are made using a commercial laser powder bed fusion machine while measurements of the radiation from the surface are made using a high speed (1800 frames per second) infrared camera. The melt pool length measurement is based on the detection of the liquidus-solidus transition that is evident in the temperature profile. Seven different combinations of programmed laser power (49 W to 195 W) and scan speed (200 mm/s to 800 mm/s) are investigated and numerous replications using a variety of scan lengths (4 mm to 12 mm) are performed. Results show that the melt pool length reaches steady state within 2 mm of the start of each scan. Melt pool length increases with laser power, but its relationship with scan speed is less obvious because there is no significant difference between cases performed at the highest laser power of 195 W. Although keyholing appears to affect the anticipated trends in melt pool length, further research is required.


2019 ◽  
Vol 164 ◽  
pp. 107534 ◽  
Author(s):  
Hahn Choo ◽  
Kin-Ling Sham ◽  
John Bohling ◽  
Austin Ngo ◽  
Xianghui Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document