A Wrinkled PEDOT:PSS Film Based Stretchable and Transparent Triboelectric Nanogenerator for Wearable Energy Harvesters and Active Motion Sensors

2018 ◽  
Vol 28 (37) ◽  
pp. 1803684 ◽  
Author(s):  
Zhen Wen ◽  
Yanqin Yang ◽  
Na Sun ◽  
Gengfei Li ◽  
Yina Liu ◽  
...  
2017 ◽  
Vol 29 (38) ◽  
pp. 1702648 ◽  
Author(s):  
Kai Dong ◽  
Jianan Deng ◽  
Yunlong Zi ◽  
Yi-Cheng Wang ◽  
Cheng Xu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanjun Ryu ◽  
Hyun-moon Park ◽  
Moo-Kang Kim ◽  
Bosung Kim ◽  
Hyoun Seok Myoung ◽  
...  

AbstractSelf-powered implantable devices have the potential to extend device operation time inside the body and reduce the necessity for high-risk repeated surgery. Without the technological innovation of in vivo energy harvesters driven by biomechanical energy, energy harvesters are insufficient and inconvenient to power titanium-packaged implantable medical devices. Here, we report on a commercial coin battery-sized high-performance inertia-driven triboelectric nanogenerator (I-TENG) based on body motion and gravity. We demonstrate that the enclosed five-stacked I-TENG converts mechanical energy into electricity at 4.9 μW/cm3 (root-mean-square output). In a preclinical test, we show that the device successfully harvests energy using real-time output voltage data monitored via Bluetooth and demonstrate the ability to charge a lithium-ion battery. Furthermore, we successfully integrate a cardiac pacemaker with the I-TENG, and confirm the ventricle pacing and sensing operation mode of the self-rechargeable cardiac pacemaker system. This proof-of-concept device may lead to the development of new self-rechargeable implantable medical devices.


2015 ◽  
Vol 25 (24) ◽  
pp. 3688-3696 ◽  
Author(s):  
Fang Yi ◽  
Long Lin ◽  
Simiao Niu ◽  
Po Kang Yang ◽  
Zhaona Wang ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1526 ◽  
Author(s):  
Gang Tang ◽  
Fang Cheng ◽  
Xin Hu ◽  
Bo Huang ◽  
Bin Xu ◽  
...  

With the continual increasing application requirements of broadband vibration energy harvesters (VEHs), many attempts have been made to broaden the bandwidth. As compared to adopted only a single approach, integration of multi-approaches can further widen the operating bandwidth. Here, a novel two-degree-of-freedom cantilever-based vibration triboelectric nanogenerator is proposed to obtain high operating bandwidth by integrating multimodal harvesting technique and inherent nonlinearity broadening behavior due to vibration contact between triboelectric surfaces. A wide operating bandwidth of 32.9 Hz is observed even at a low acceleration of 0.6 g. Meanwhile, the peak output voltage is 18.8 V at the primary resonant frequency of 23 Hz and 1 g, while the output voltage is 14.9 V at the secondary frequency of 75 Hz and 2.5 g. Under the frequencies of these two modes at 1 g, maximum peak power of 43.08 μW and 12.5 μW are achieved, respectively. Additionally, the fabricated device shows good stability, reaching and maintaining its voltage at 8 V when tested on a vacuum compression pump. The experimental results demonstrate the device has the ability to harvest energy from a wide range of low-frequency (<100 Hz) vibrations and has broad application prospects in self-powered electronic devices and systems.


2016 ◽  
Vol 2 (6) ◽  
pp. e1501624 ◽  
Author(s):  
Fang Yi ◽  
Xiaofeng Wang ◽  
Simiao Niu ◽  
Shengming Li ◽  
Yajiang Yin ◽  
...  

The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.


RSC Advances ◽  
2017 ◽  
Vol 7 (76) ◽  
pp. 48368-48373 ◽  
Author(s):  
Min-Ki Kim ◽  
Myoung-Soo Kim ◽  
Hong-Bum Kwon ◽  
Sung-Eun Jo ◽  
Yong-Jun Kim

Triboelectric nanogenerators (TENGs) have recently shown promising potential as effective energy harvesters using human motion energy. We propose a flexible TENG with a fluorocarbon plasma-etched polydimethylsiloxane (PDMS)–carbon nanotube (CNT).


2021 ◽  
Vol 216 ◽  
pp. 109068
Author(s):  
Xu Xu ◽  
Yuting Ouyang ◽  
Shaorong Lu ◽  
Hong Ruan ◽  
Yuqi Li

2017 ◽  
Vol 28 (18) ◽  
pp. 185403 ◽  
Author(s):  
Abdelsalam Ahmed ◽  
Islam Hassan ◽  
Tao Jiang ◽  
Khalid Youssef ◽  
Lian Liu ◽  
...  

2018 ◽  
Vol 1 (6) ◽  
pp. 2955-2960 ◽  
Author(s):  
Renyun Zhang ◽  
Magnus Hummelgård ◽  
Jonas Örtegren ◽  
Martin Olsen ◽  
Henrik Andersson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document