Dopant Diffusion Equilibrium Overcoming Impurity Loss of Doped QDs for Multimode Anti‐Counterfeiting and Encryption

2021 ◽  
pp. 2100286
Author(s):  
Bing Bai ◽  
Meng Xu ◽  
Jianzhong Li ◽  
Shuping Zhang ◽  
Chen Qiao ◽  
...  
Keyword(s):  
1999 ◽  
Vol 568 ◽  
Author(s):  
Arthur F.W. Willoughby ◽  
Janet M. Bonar ◽  
Andrew D.N. Paine

ABSTRACTInterest in diffusion processes in SiGe alloys arises from their potential in HBT's, HFET's, and optoelectronics devices, where migration over distances as small as a few nanometres can be significant. Successful modelling of these processes requires a much improved understanding of the mechanisms of self- and dopant diffusion in the alloy, although recent progress has been made. It is the purpose of this review to set this in the context of diffusion processes in elemental silicon and germanium, and to identify how this can help to elucidate behaviour in the alloy. Firstly, self diffusion processes are reviewed, from general agreement that self-diffusion in germanium is dominated by neutral and acceptor vacancies, to the position in silicon which is still uncertain. Germanium diffusion in silicon, however, appears to be via both vacancy and interstitial processes, and in the bulk alloy there is evidence for a change in dominant mechanism at around 35 percent germanium. Next, a review of dopant diffusion begins with Sb, which appears to diffuse in germanium by a mechanism similar to self-diffusion, and in silicon via monovacancies also, from marker layer evidence. In SiGe, the effects of composition and strain in epitaxial layers on Si substrates are also consistent with diffusion via vacancies, but questions still remain on the role of charged defects. The use of Sb to monitor vacancy effects such as grown-in defects by low temperature MBE, are discussed. Lastly, progress in assessing the role of vacancies and interstitials in the diffusion of boron is reviewed, which is dominated by interstitials in silicon-rich alloys, but appears to change to domination by vacancies at around 40 percent germanium, although studies in pure germanium are greatly needed.


2002 ◽  
Vol 719 ◽  
Author(s):  
Ian D. Sharp ◽  
Hartmut A. Bracht ◽  
Hughes H. Silvestri ◽  
Samuel P. Nicols ◽  
Jeffrey W. Beeman ◽  
...  

AbstractIsotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. 30Si was used as a tracer through a multilayer structure of alternating natural Si and enriched 28Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850°C and 1100°C. A specially designed ion-implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.


2018 ◽  
Vol 30 (24) ◽  
pp. 2163-2166 ◽  
Author(s):  
Vadivukkarasi Jeyaselvan ◽  
Shankar Kumar Selvaraja

1981 ◽  
Vol 23 (10) ◽  
pp. 5555-5569 ◽  
Author(s):  
R. F. Wood ◽  
J. R. Kirkpatrick ◽  
G. E. Giles

2004 ◽  
Vol 10 (4) ◽  
pp. 462-469 ◽  
Author(s):  
Wolf-Dieter Rau ◽  
Alexander Orchowski

We present and review dopant mapping examples in semiconductor device structures by electron holography and outline their potential applications for experimental investigation of two-dimensional (2D) dopant diffusion on the nanometer scale. We address the technical challenges of the method when applied to transistor structures with respect to quantification of the results in terms of the 2Dp–njunction potential and critically review experimental boundary conditions, accuracy, and potential pitfalls. By obtaining maps of the inner electrostatic potential before and after anneals typically used in device processing, we demonstrate how the “vertical” and “lateral” redistribution of boron during device fabrication can directly be revealed. Such data can be compared with the results of process simulation to extract the fundamental parameters for dopant diffusion in complex device structures.


Sign in / Sign up

Export Citation Format

Share Document