A Bioprinting Process Supplemented with In Situ Electrical Stimulation Directly Induces Significant Myotube Formation and Myogenesis

2021 ◽  
pp. 2105170
Author(s):  
WonJin Kim ◽  
Hyeongjin Lee ◽  
Chang Kyu Lee ◽  
Jae Won Kyung ◽  
Seong Bae An ◽  
...  
2021 ◽  
Vol 31 (51) ◽  
pp. 2170375
Author(s):  
WonJin Kim ◽  
Hyeongjin Lee ◽  
Chang Kyu Lee ◽  
Jae Won Kyung ◽  
Seong Bae An ◽  
...  

Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


1983 ◽  
Vol 54 (1) ◽  
pp. 215-224 ◽  
Author(s):  
S. G. Hendrix ◽  
N. M. Munoz ◽  
A. R. Leff

We studied the isometric response of bronchial smooth muscle in a single third-order bronchus of 24 dogs in situ. Length-tension studies were performed in six dogs by repeated injection of 10(-5) mol acetylcholine (ACh) into the right bronchoesophageal artery, and the resting tension (30.6 +/- 6.9 g/cm) and length (0.76 +/- 0.14 cm) permitting maximal contraction were determined. In eight other dogs, dose-related bronchial contraction was obtained with 10(-10) to 10(-5) mol intra-arterial (ia) ACh. Supramaximal electrical stimulation of the right cervical vagus nerve and bronchial parasympathetic ganglion stimulation with ia 1–1-dimethyl-4-phenylpiperazinium (DMPP) also caused bronchial contraction. The maximal response to ia ACh (28.5 +/- 1.7 g/cm), supramaximal electrical stimulation (15.2 +/- 1.1 g/cm), and ia DMPP (10.5 +/- 3.0 g/cm) was blocked by an ia dose of atropine (1–5 micrograms/kg) that did not alter the sympathetic relaxation response in the trachea. In four dogs, the bronchial response to sympathetic activation was studied by intravenous (iv) bolus injection of DMPP after cholinergic blockade with atropine. DMPP (25 micrograms/kg iv) caused 9.5 +/- 2.2 g/cm bronchial relaxation, which was blocked completely by 2–4 mg/kg iv propranolol. In six other dogs, hypoxia induced by ventilation with pure nitrogen caused bronchial contraction, which was blocked by vagotomy, atropine, and hexamethonium. We report a sensitive method for selective measurement of bronchial smooth muscle response in a single resistance bronchus. This preparation preserves regional innervation and circulation and permits selective physiological stimulation in situ.


2002 ◽  
Vol 282 (4) ◽  
pp. H1278-H1287 ◽  
Author(s):  
Pedro Boscan ◽  
Julian F. R. Paton

We determined the activity of neurons within the nucleus of the solitary tract (NTS) after stimulation of the cornea and assessed whether this input affected the processing of baroreceptor and peripheral chemoreceptor inputs. In an in situ, unanesthetized decerebrate working heart-brain stem preparation of the rat, noxious mechanical or electrical stimulation was applied to the cornea, and extracellular single unit recordings were made from NTS neurons. Cornea nociceptor stimulation evoked bradycardia and an increase in the cycle length of the phrenic nerve discharge. Of 90 NTS neurons with ongoing activity, corneal stimulation excited 51 and depressed 39. There was a high degree of convergence to these NTS neurons from either baroreceptors or chemoreceptors. The excitatory synaptic response in 12 of 19 baroreceptive and 10 of 15 chemoreceptive neurons was attenuated significantly during concomitant electrical stimulation of the cornea. This inhibition was GABAA receptor mediated, being blocked by pressure ejection of bicuculline. Thus the NTS integrates information from corneal receptors, some of which converges onto neurons mediating reflexes from baroreceptors and chemoreceptors to inhibit these inputs.


1988 ◽  
Vol 66 (3) ◽  
pp. 380-384 ◽  
Author(s):  
Sylvain Foucart ◽  
Jacques de Champlain ◽  
Reginald Nadeau

In this study, the reversal of the potentiating effect of idazoxan, a selective α2-antagonist, on adrenal catecholamine release elicited by splanchnic nerve stimulation in anaesthetized and vagotomized dogs, was investigated with the use of oxymetazoline, a selective α2-agonist. Stimulation of the left splanchnic nerve (5.0-V pulses of 2 ms duration for 3 min at a frequency of 2 Hz) was applied before and 20 min after the i. v. injection of each drug. Blood samples were collected in the adrenal vein before and at the end of each stimulation. The results show that the release of catecholamines induced by electrical stimulation was potentiated by 50% after idazoxan injection (0.1 mg/kg). This enhanced response was significantly antagonized by the subsequent injection of oxymetazoline (2 μg/kg). The α2-modulating effect appears to be related to the amount of catecholamines released during the stimulation, since by subgrouping of the data on the basis of the degree of potentiation by idazoxan, it was observed that this drug was more efficient when catecholamine release was higher during control stimulation. In contrast, the reversing effect of oxymetazoline was found to be more pronounced when catecholamine release was lower. These results thus suggest that the sensitivity of the α2-adrenoceptor mechanism may depend upon the in situ concentration of adrenal catecholamine release during electrical stimulation and that the potentiating effect of α2-blockade can be reversed by activation of those receptors by a selective α2-agonist.


2006 ◽  
Vol 147 (4) ◽  
pp. 371-378 ◽  
Author(s):  
Rodolfo Rodriguez ◽  
Rosa Ventura-Martinez ◽  
Jacinto Santiago-Mejia ◽  
Maria R Avila-Costa ◽  
Teresa I Fortoul

2005 ◽  
Vol 289 (4) ◽  
pp. E710-E715 ◽  
Author(s):  
Denise Hurst ◽  
Eric B. Taylor ◽  
Troy D. Cline ◽  
Lyle J. Greenwood ◽  
Cori L. Compton ◽  
...  

This study was designed to examine activity of AMP-activated protein kinase kinase (AMPKK) in muscles from nontrained and endurance-trained rats. Rats were trained 5 days/wk, 2 h/day for 8 wk at a final intensity of 32 m/min up a 15% grade with 30-s sprints at 53 m/min every 10 min. Gastrocnemius muscles were stimulated in situ in trained and nontrained rats for 5 min at frequencies of 0.4/s and 1/s. Gastrocnemius LKB1 protein, a putative component of the AMPKK complex (LKB1, STRAD, and MO25), increased approximately twofold in response to training. Phosphorylation of AMP-activated protein kinase (AMPK) determined by Western blot and AMPK activity of immunoprecipitates (both isoforms) was increased at both stimulation rates in both trained and nontrained muscles. AMPKK activity was 73% lower in resuspended polyethylene glycol precipitates of muscle extracts from the trained compared with nontrained rats. AMPKK activity did not increase in either trained or nontrained muscle in response to electrical stimulation, even though phospho-AMPK did increase. These results suggest that AMPKK is activated during electrical stimulation of both trained and nontrained muscle by mechanisms other than covalent modification.


2021 ◽  
Author(s):  
Lia Pailino ◽  
Lihua Lou ◽  
Alberto Sesena Rubfiaro ◽  
Jin He ◽  
Arvind Agarwal

Engineered cardiomyocytes made of human-induced pluripotent stem cells (iPSC) present phenotypical characteristics similar to human fetal cardiomyocytes. There are different factors that are essential for engineered cardiomyocytes to be functional, one of them being that their mechanical properties must mimic those of adult cardiomyocytes. Techniques, such as electrical stimulation, have been used to improve the extracellular matrix's alignment and organization and improve the intracellular environment. Therefore, electrical stimulation could potentially be used to enhance the mechanical properties of engineered cardiac tissue. The goal of this study is to establish the effects of electrical stimulation on the elastic modulus of engineered cardiac tissue. Nanoindentation tests were performed on engineered cardiomyocyte constructs under seven days of electrical stimulation and engineered cardiomyocyte constructs without electrical stimulation. The tests were conducted using BioSoft™ In-Situ Indenter through displacement control mode with a 50 µm conospherical diamond fluid cell probe. The Hertzian fit model was used to analyze the data and obtain the elastic modulus for each construct. This study demonstrated that electrically stimulated cardiomyocytes (6.98 ± 0.04 kPa) present higher elastic modulus than cardiomyocytes without electrical stimulation (4.96 ± 0.29 kPa) at day 7 of maturation. These results confirm that electrical stimulation improves the maturation of cardiomyocytes. Through this study, an efficient nanoindentation method is demonstrated for engineered cardiomyocyte tissues, capable of capturing the nanomechanical differences between electrically stimulated and non-electrically stimulated cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document