scholarly journals Cell Sorting: Microfluidic Cell Sorter (μFCS) for On-chip Capture and Analysis of Single Cells (Adv. Healthcare Mater. 4/2012)

2012 ◽  
Vol 1 (4) ◽  
pp. 365-365
Author(s):  
Jaehoon Chung ◽  
Huilin Shao ◽  
Thomas Reiner ◽  
David Issadore ◽  
Ralph Weissleder ◽  
...  
2012 ◽  
Vol 1 (4) ◽  
pp. 432-436 ◽  
Author(s):  
Jaehoon Chung ◽  
Huilin Shao ◽  
Thomas Reiner ◽  
David Issadore ◽  
Ralph Weissleder ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40395-40405
Author(s):  
Kunpeng Cai ◽  
Shruti Mankar ◽  
Anastasia Maslova ◽  
Taiga Ajiri ◽  
Tasuku Yotoriyama

With the potential to avoid cross-contamination, eliminate bio-aerosols, and minimize device footprints, microfluidic fluorescence-activated cell sorting (μ-FACS) devices could become the platform for the next generation cell sorter.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haoran Wang ◽  
Anton Enders ◽  
John-Alexander Preuss ◽  
Janina Bahnemann ◽  
Alexander Heisterkamp ◽  
...  

Abstract3D printing of microfluidic lab-on-a-chip devices enables rapid prototyping of robust and complex structures. In this work, we designed and fabricated a 3D printed lab-on-a-chip device for fiber-based dual beam optical manipulation. The final 3D printed chip offers three key features, such as (1) an optimized fiber channel design for precise alignment of optical fibers, (2) an optically clear window to visualize the trapping region, and (3) a sample channel which facilitates hydrodynamic focusing of samples. A square zig–zag structure incorporated in the sample channel increases the number of particles at the trapping site and focuses the cells and particles during experiments when operating the chip at low Reynolds number. To evaluate the performance of the device for optical manipulation, we implemented on-chip, fiber-based optical trapping of different-sized microscopic particles and performed trap stiffness measurements. In addition, optical stretching of MCF-7 cells was successfully accomplished for the purpose of studying the effects of a cytochalasin metabolite, pyrichalasin H, on cell elasticity. We observed distinct changes in the deformability of single cells treated with pyrichalasin H compared to untreated cells. These results demonstrate that 3D printed microfluidic lab-on-a-chip devices offer a cost-effective and customizable platform for applications in optical manipulation.


Author(s):  
T. Ichiki ◽  
T. Ujiie ◽  
T. Hara ◽  
Y. Horiike ◽  
K. Yasuda

Lab on a Chip ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 4235-4245
Author(s):  
Yingkai Lyu ◽  
Xiaofei Yuan ◽  
Andrew Glidle ◽  
Yuchen Fu ◽  
Hitoshi Furusho ◽  
...  

We report an automated, high throughput Raman activated cell sorter using three-dimensional microfluidics (3D-RACS).


2012 ◽  
Vol 51 ◽  
pp. 06FK08 ◽  
Author(s):  
Hideyuki Terazono ◽  
Masahito Hayashi ◽  
Hyonchol Kim ◽  
Akihiro Hattori ◽  
Kenji Yasuda

Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 308 ◽  
Author(s):  
Phalguni Tewari Kumar ◽  
Deborah Decrop ◽  
Saba Safdar ◽  
Ioannis Passaris ◽  
Tadej Kokalj ◽  
...  

When screening microbial populations or consortia for interesting cells, their selective retrieval for further study can be of great interest. To this end, traditional fluorescence activated cell sorting (FACS) and optical tweezers (OT) enabled methods have typically been used. However, the former, although allowing cell sorting, fails to track dynamic cell behavior, while the latter has been limited to complex channel-based microfluidic platforms. In this study, digital microfluidics (DMF) was integrated with OT for selective trapping, relocation, and further proliferation of single bacterial cells, while offering continuous imaging of cells to evaluate dynamic cell behavior. To enable this, magnetic beads coated with Salmonella Typhimurium-targeting antibodies were seeded in the microwell array of the DMF platform, and used to capture single cells of a fluorescent S. Typhimurium population. Next, OT were used to select a bead with a bacterium of interest, based on its fluorescent expression, and to relocate this bead to a different microwell on the same or different array. Using an agar patch affixed on top, the relocated bacterium was subsequently allowed to proliferate. Our OT-integrated DMF platform thus successfully enabled selective trapping, retrieval, relocation, and proliferation of bacteria of interest at single-cell level, thereby enabling their downstream analysis.


2011 ◽  
Vol 79A (5) ◽  
pp. 361-367 ◽  
Author(s):  
M. Z. Islam ◽  
J. N. McMullin ◽  
Y. Y. Tsui

Blood ◽  
1995 ◽  
Vol 85 (9) ◽  
pp. 2422-2435 ◽  
Author(s):  
EK Waller ◽  
J Olweus ◽  
F Lund-Johansen ◽  
S Huang ◽  
M Nguyen ◽  
...  

There is a long-standing controversy as to whether a single bone marrow (BM)-derived cell can differentiate along both hematopoietic and stromal lineages. Both primitive hematopoietic and stromal progenitor cells in human BM express the CD34 antigen but lack expression of other surface markers, such as CD38. In this study we examined the CD34+, CD38- fraction of human fetal BM by multiparameter fluorescence- activated cell sorting (FACS) analysis and single-cell sorting. CD34+, C38- cells could be divided into HLA-DR+ and HLA-DR- fractions. After single-cell sorting, 59% of the HLA-DR+ cells formed hematopoietic colonies. In contrast, the CD34+, CD38-, HLA-DR- cells were much more heterogeneous with respect to their light scatter properties, expression of other hematopoietic markers (CD10, CD36, CD43, CD49b, CD49d, CD49e, CD50, CD62E, CD90w, CD105, and CD106), and growth properties. Single CD34+, CD38-, HLA-DR- cells sorted into individual culture wells formed either hematopoietic or stromal colonies. The presence or absence of CD50 (ICAM-3) expression distinguished hematopoietic from stromal progenitors within the CD34+, CD38-, HLA-DR- population. The CD50+ fraction had light scatter characteristics and growth properties of hematopoietic progenitor cells. In contrast, the CD50- fraction lacked hematopoietic progenitor activity but contained clonogenic stromal progenitors at a mean frequency of 5%. We tested the hypothesis that cultures derived from single cells with the CD34+, CD38- , HLA-DR- phenotype could differentiate along both a hematopoietic and stromal lineage. The cultures contained a variety of mesenchymal cell types and mononuclear cells that had the morphologic appearance of histiocytes. Immunophenotyping of cells from these cultures indicated a stromal rather than a hematopoietic origin. In addition, the growth of the histiocytic cells was independent of the presence or the absence of hematopoietic growth factors. Based on sorting more than 30,000 single cells with the CD34+, CD38-, HLA-DR- phenotype into individual culture wells, and an analysis of 864 stromal cultures initiated by single CD34+ BM cells, this study does not support the hypothesis of a single common progenitor for both hematopoietic and stromal lineages within human fetal BM.


2017 ◽  
Vol 9 (47) ◽  
pp. 6719-6724
Author(s):  
Melinda A. Lake ◽  
Seth A. Berry ◽  
David J. Hoelzle

We demonstrate an empirical method and a balanced random forest statistical analysis to study the efficacy of microfluidic cell sorter designs with an imbalanced distribution of outcomes. The study uses polystyrene beads as model cells and studies the effects of design variables on the outcome of the beads at a Y-shaped bifurcation.


Sign in / Sign up

Export Citation Format

Share Document