Bacterial tRNase-Based Gene Therapy with Poly(β-Amino Ester) Nanoparticles for Suppressing Melanoma Tumor Growth and Relapse

2018 ◽  
Vol 7 (16) ◽  
pp. 1800052 ◽  
Author(s):  
Sungjin Min ◽  
Yoonhee Jin ◽  
Chen Yuan Hou ◽  
Jayoung Kim ◽  
Jordan J. Green ◽  
...  
2006 ◽  
Vol 53 (2) ◽  
pp. 357-360 ◽  
Author(s):  
Iwona Mitrus ◽  
Klaudia Delić ◽  
Natalia Wróbel ◽  
Ewa Missol-Kolka ◽  
Stanisław Szala

We investigated suppression of murine B16(F10) melanoma tumor growth following a therapy which involved concomitant administration of cyclophosphamide and plasmid DNA bearing interleukin-12 gene. Since both therapeutic factors display antiangiogenic capabilities, we assumed that their use in blocking the formation of new blood vessels would result in augmented inhibition of tumor growth. This combined therapy regimen indeed resulted in a considerable suppression of tumor growth. We observed a statistically significant extension of treated animals' lifespan. Interestingly, the therapeutic effect was also obtained using a plasmid without an interleukin gene insert. This observation suggests that plasmid DNA, which has been widely applied for treating neoplastic tumors, contains element(s) that elicit immune response in mice.


2020 ◽  
Vol 20 ◽  
Author(s):  
Weihong Qu ◽  
Jianguo Zhao ◽  
Yaqing Wu ◽  
Ruian Xu ◽  
Shaowu Liu

Background:: Lung cancer remains the most common cause of cancer-related deaths in China and worldwide. Traditional surgery and chemotherapy do not offer an effective cure although gene therapy may be a promising future alter-native. Kallistatin (Kal) is an endogenous inhibitor of angiogenesis and tumorigenesis. Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy of many diseases due to persistent and long-term transgen-ic expression. Objective:: The aim of this study was to investigate whether rAAV9-Kal inhibited NCI-H446 subcutaneous xenograft tumor growth in mice. Method:: The subcutaneous xenograft mode were induced by subcutaneous injection of 2×106 H446 cells into the dorsal skin of BALB/c nude mice. The mice were administered with ssrAAV9-Kal (single-stranded rAAV9) or dsrAAV9-Kal (double-stranded rAAV9)by intraperitoneal injection (I.P.). Tumor microvessel density (MVD) was examined by anti-CD34 stain-ing to evaluate tumor angiogenesis. Results:: Compared with the PBS (blank control) group, tumor growth in the high-dose ssrAAV9-Kal group was inhibited by 40% by day 49, and the MVD of tumor tissues was significantly decreased. Conclusion:: The results indicate that this therapeutic strategy is a promising approach for clinical cancer therapy and impli-cate rAAV9-Kal as a candidate for gene therapy of lung cancer.


2021 ◽  
Vol 9 (5) ◽  
pp. e002054
Author(s):  
Francisco J Cueto ◽  
Carlos del Fresno ◽  
Paola Brandi ◽  
Alexis J. Combes ◽  
Elena Hernández-García ◽  
...  

BackgroundConventional type 1 dendritic cells (cDC1s) are central to antitumor immunity and their presence in the tumor microenvironment associates with improved outcomes in patients with cancer. DNGR-1 (CLEC9A) is a dead cell-sensing receptor highly restricted to cDC1s. DNGR-1 has been involved in both cross-presentation of dead cell-associated antigens and processes of disease tolerance, but its role in antitumor immunity has not been clarified yet.MethodsB16 and MC38 tumor cell lines were inoculated subcutaneously into wild-type (WT) and DNGR-1-deficient mice. To overexpress Flt3L systemically, we performed gene therapy through the hydrodynamic injection of an Flt3L-encoding plasmid. To characterize the immune response, we performed flow cytometry and RNA-Seq of tumor-infiltrating cDC1s.ResultsHere, we found that cross-presentation of tumor antigens in the steady state was DNGR-1-independent. However, on Flt3L systemic overexpression, tumor growth was delayed in DNGR-1-deficient mice compared with WT mice. Of note, this protection was recapitulated by anti-DNGR-1-blocking antibodies in mice following Flt3L gene therapy. This improved antitumor immunity was associated with Batf3-dependent enhanced accumulation of CD8+ T cells and cDC1s within tumors. Mechanistically, the deficiency in DNGR-1 boosted an Flt3L-induced specific inflammatory gene signature in cDC1s, including Ccl5 expression. Indeed, the increased infiltration of cDC1s within tumors and their protective effect rely on CCL5/CCR5 chemoattraction. Moreover, FLT3LG and CCL5 or CCR5 gene expression signatures correlate with an enhanced cDC1 signature and a favorable overall survival in patients with cancer. Notably, cyclophosphamide elevated serum Flt3L levels and, in combination with the absence of DNGR-1, synergized against tumor growth.ConclusionDNGR-1 limits the accumulation of tumor-infiltrating cDC1s promoted by Flt3L. Thus, DNGR-1 blockade may improve antitumor immunity in tumor therapy settings associated to high Flt3L expression.


2017 ◽  
Vol 385 ◽  
pp. 243-250 ◽  
Author(s):  
Raghavendra Gowda ◽  
Arati Sharma ◽  
Gavin P. Robertson

2014 ◽  
Vol 7 ◽  
pp. CGM.S14501 ◽  
Author(s):  
Patrick C. Hackler ◽  
Sarah Reuss ◽  
Raymond L. Konger ◽  
Jeffrey B. Travers ◽  
Ravi P. Sahu

Pro-oxidative stressors including cigarette smoke (CS) generate novel lipids with platelet-activated factor-receptor (PAF-R) agonistic activity mediate systemic immunosuppression, one of the most recognized events in promoting carcinogenesis. Our previous studies have established that these oxidized-PAF-R-agonists augment murine B16F10 melanoma tumor growth in a PAF-R-dependent manner because of its effects on host immunity. As CS generates PAF-R agonists, the current studies sought to determine the impact of PAF-R agonists on lung cancer growth and metastasis. Using the murine Lewis Lung Carcinoma (LLC1) model, we demonstrate that treatment of C57BL/6 mice with a PAF-R agonist augments tumor growth and lung metastasis in a PAF-R-dependent manner as these findings were not seen in PAF-R-deficient mice. Importantly, this effect was because of host rather than tumor cells PAF-R dependent as LLC1 cells do not express functional PAF-R. These findings indicate that experimental lung cancer progression can be modulated by the PAF system.


2018 ◽  
Vol 06 (01) ◽  
Author(s):  
Shilpaa Mukundan ◽  
Dongli Guan ◽  
Amy Singleton ◽  
Yunlong Yang ◽  
Matthew Li ◽  
...  
Keyword(s):  
T Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document