A Biphasic Osteovascular Biomimetic Scaffold for Rapid and Self‐Sustained Endochondral Ossification

2021 ◽  
pp. 2100070
Author(s):  
Hwan D. Kim ◽  
Xuechong Hong ◽  
Young‐Hyeon An ◽  
Mihn Jeong Park ◽  
Do‐Gyoon Kim ◽  
...  
2021 ◽  
pp. 2100143
Author(s):  
Yutong Liu ◽  
Zhaogang Yang ◽  
Lixuan Wang ◽  
Lili Sun ◽  
Betty Y. S. Kim ◽  
...  

2003 ◽  
Vol 11 (1) ◽  
pp. 36-43 ◽  
Author(s):  
J. Kitagaki ◽  
M. Iwamoto ◽  
J.-G. Liu ◽  
Y. Tamamura ◽  
M. Pacifci ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yu-Ting Yen ◽  
May Chien ◽  
Pei-Yi Wu ◽  
Shih-Chieh Hung

AbstractIt has not been well studied which cells and related mechanisms contribute to endochondral ossification. Here, we fate mapped the leptin receptor-expressing (LepR+) mesenchymal stem cells (MSCs) in different embryonic and adult extremities using Lepr-cre; tdTomato mice and investigated the underling mechanism using Lepr-cre; Ppp2r1afl/fl mice. Tomato+ cells appear in the primary and secondary ossification centers and express the hypertrophic markers. Ppp2r1a deletion in LepR+ MSCs reduces the expression of Runx2, Osterix, alkaline phosphatase, collagen X, and MMP13, but increases that of the mature adipocyte marker perilipin, thereby reducing trabecular bone density and enhancing fat content. Mechanistically, PP2A dephosphorylates Runx2 and BRD4, thereby playing a major role in positively and negatively regulating osteogenesis and adipogenesis, respectively. Our data identify LepR+ MSC as the cell origin of endochondral ossification during embryonic and postnatal bone growth and suggest that PP2A is a therapeutic target in the treatment of dysregulated bone formation.


2021 ◽  
Author(s):  
Hideki Nakamoto ◽  
Yuki Katanosaka ◽  
Ryota Chijimatsu ◽  
Daisuke Mori ◽  
Fengjun Xuan ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Shankar Rengasamy Venugopalan ◽  
Eric Van Otterloo

The cranial base is a multifunctional bony platform within the core of the cranium, spanning rostral to caudal ends. This structure provides support for the brain and skull vault above, serves as a link between the head and the vertebral column below, and seamlessly integrates with the facial skeleton at its rostral end. Unique from the majority of the cranial skeleton, the cranial base develops from a cartilage intermediate—the chondrocranium—through the process of endochondral ossification. Owing to the intimate association of the cranial base with nearly all aspects of the head, congenital birth defects impacting these structures often coincide with anomalies of the cranial base. Despite this critical importance, studies investigating the genetic control of cranial base development and associated disorders lags in comparison to other craniofacial structures. Here, we highlight and review developmental and genetic aspects of the cranial base, including its transition from cartilage to bone, dual embryological origins, and vignettes of transcription factors controlling its formation.


2021 ◽  
Vol 12 ◽  
pp. 204173142110042
Author(s):  
Rao Fu ◽  
Chuanqi Liu ◽  
Yuxin Yan ◽  
Qingfeng Li ◽  
Ru-Lin Huang

Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.


Sign in / Sign up

Export Citation Format

Share Document