Generation and Control of Terahertz Spin Currents in Topology‐induced Two‐dimensional Ferromagnetic Fe 3 GeTe 2 |Bi 2 Te 3 Heterostructures

2021 ◽  
pp. 2106172
Author(s):  
Xinhou Chen ◽  
Hangtian Wang ◽  
Haijiang Liu ◽  
Chun Wang ◽  
Gaoshuai Wei ◽  
...  
Author(s):  
Y-T Wang ◽  
R-H Wong ◽  
J-T Lu

As opposed to traditional pneumatic linear actuators, muscle and rotational actuators are newly developed actuators in rotational and specified applications. In the current paper, these actuators are used to set up two-dimensional pneumatic arms, which are used mainly to simulate the excavator's motion. Fuzzy control algorithms are typically applied in pneumatic control systems owing to their non-linearities and ill-defined mathematical model. The self-organizing fuzzy controller, which includes a self-learning mechanism to modify fuzzy rules, is applied in these two-dimensional pneumatic arm control systems. Via a variety of trajectory tracking experiments, the present paper provides comparisons of system characteristics and control performances.


2008 ◽  
Vol 77 (10) ◽  
pp. 103714 ◽  
Author(s):  
Philip M. R. Brydon ◽  
Dirk Manske ◽  
Manfred Sigrist

Author(s):  
Sara A. C. Correia ◽  
John Ward

This paper describes the development of a two-dimensional zone model to predict the throughput and thermal performance of a continuously operated gas-fired furnace heating steel bars to a nominal discharge temperature of 1250°C. Ultimately the model is intended to be a tool which can be used for the design and control of industrial furnaces. Consequently relatively short computing times are necessary and this was achieved by employing an isothermal computational fluid dynamics simulation to estimate the relative mass flows, and hence enthalpy flows to or from adjacent volume zones in the overall model. This simplified approach, which utilises a single “once off” isothermal computation of the flows, was considered to be adequate since isothermal flow models have been used successfully in the past to study the flow related behaviour of combustion systems. The coupling of a multi-zone model with a single “once off” isothermal computation of the flows enables a wide range of furnace design modifications to be studied quickly and easily. To illustrate the potential use of the model in a furnace design application, it was then used to investigate the effects of inclining the burners downwards towards the load as well as those associated with increasing the length of the furnace.


Author(s):  
Ali Ketabdari ◽  
Mohammad Hadi Farahi ◽  
Sohrab Effati

Abstract We define a new operational matrix of fractional derivative in the Caputo type and apply a spectral method to solve a two-dimensional fractional optimal control problem (2D-FOCP). To acquire this aim, first we expand the state and control variables based on the fractional order of Bernstein functions. Then we reduce the constraints of 2D-FOCP to a system of algebraic equations through the operational matrix. Now, one can solve straightforward the problem and drive the approximate solution of state and control variables. The convergence of the method in approximating the 2D-FOCP is proved. We demonstrate the efficiency and superiority of the method by comparing the results obtained by the presented method with the results of previous methods in some examples.


Sign in / Sign up

Export Citation Format

Share Document