scholarly journals Electrogyration in Metamaterials: Chirality and Polarization Rotatory Power that Depend on Applied Electric Field

2020 ◽  
pp. 2001826
Author(s):  
Qiang Zhang ◽  
Eric Plum ◽  
Jun‐Yu Ou ◽  
Hailong Pi ◽  
Junqing Li ◽  
...  
1972 ◽  
Vol 33 (C1) ◽  
pp. C1-63-C1-67 ◽  
Author(s):  
M. BERTOLOTTI ◽  
B. DAINO ◽  
P. Di PORTO ◽  
F. SCUDIERI ◽  
D. SETTE

2012 ◽  
Vol 15 (2-3) ◽  
pp. 127-139
Author(s):  
Tung Tran Anh ◽  
Laurent Berquez ◽  
Laurent Boudou ◽  
Juan Martinez-Vega ◽  
Alain Lacarnoy

2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Q. Li ◽  
Y. H. Chen

A semi-permeable interface crack in infinite elastic dielectric/piezoelectric bimaterials under combined electric and mechanical loading is studied by using the Stroh complex variable theory. Attention is focused on the influence induced from the permittivity of the medium inside the crack gap on the near-tip singularity and on the energy release rate (ERR). Thirty five kinds of such bimaterials are considered, which are constructed by five kinds of elastic dielectrics and seven kinds of piezoelectrics, respectively. Numerical results for the interface crack tip singularities are calculated. We demonstrate that, whatever the dielectric phase is much softer or much harder than the piezoelectric phase, the structure of the singular field near the semi-permeable interface crack tip in such bimaterials always consists of the singularity r−1∕2 and a pair of oscillatory singularities r−1∕2±iε. Calculated values of the oscillatory index ε for the 35 kinds of bimaterials are presented in tables, which are always within the range between 0.046 and 0.088. Energy analyses for five kinds of such bimaterials constructed by PZT-4 and the five kinds of elastic dielectrics are studied in more detail under four different cases: (i) the crack is electrically conducting, (ii) the crack gap is filled with air/vacuum, (iii) the crack gap is filled with silicon oil, and (iv) the crack is electrically impermeable. Detailed comparisons on the variable tendencies of the crack tip ERR against the applied electric field are given under some practical electromechanical loading levels. We conclude that the different values of the permittivity have no influence on the crack tip singularity but have significant influences on the crack tip ERR. We also conclude that the previous investigations under the impermeable crack model are incorrect since the results of the ERR for the impermeable crack show significant discrepancies from those for the semi-permeable crack, whereas the previous investigations under the conducting crack model may be accepted in a tolerant way since the results of the ERR show very small discrepancies from those for the semi-permeable crack, especially when the crack gap is filled with silicon oil. In all cases under consideration the curves of the ERR for silicon oil are more likely tending to those for the conducting crack rather than to those for air or vacuum. Finally, we conclude that the variable tendencies of the ERR against the applied electric field have an interesting load-dependent feature when the applied mechanical loading increases. This feature is due to the nonlinear relation between the normal electric displacement component and the applied electromechanical loadings from a quadratic equation.


The Analyst ◽  
2020 ◽  
Vol 145 (6) ◽  
pp. 2412-2419 ◽  
Author(s):  
Rachel N. Deraney ◽  
Lindsay Schneider ◽  
Anubhav Tripathi

NA extraction and purification utilitzing a microfluidic chip with applied electric field to induce electroosmotic flow opposite the magnetic NA-bound bead mix.


2020 ◽  
Vol 10 (6) ◽  
pp. 780-787
Author(s):  
Hongyue Gao ◽  
Suna Li ◽  
Jicheng Liu ◽  
Wen Zhou ◽  
Fan Xu ◽  
...  

In this paper, we studied the holographic properties of liquid crystal (LC) thin film doped with carbon dots (CDs) which can be used as real-time holographic display screen. The maximum value of diffraction efficiency can reach up to 30% by using a low applied electric field 0.2 V/μm. Holograms in the LC film can be dynamically formed and self-erased. The hologram build-up time and the hologram self-erasure time in the material is fast enough to realize video refresh rate. In addition, the forming process of hologram was studied. The holographic diffraction efficiency was measured depending on the intensity of recording light, applied electric field, the intensity of readout light, and readout light polarization direction. Triple enhancement of the diffraction efficiency value by the modulation of voltage under the condition of low recording energy is presented. Therefore, we develop an easy way to obtain real-time dynamic holographic red, green and blue displays with high diffraction efficiency, which allow the LC film doped with CDs to be used as a holographic 3D display screen.


2013 ◽  
Vol 28 (03) ◽  
pp. 1340015 ◽  
Author(s):  
LANCE LABUN ◽  
JOHANN RAFELSKI

The electron vacuum fluctuations measured by [Formula: see text] do not vanish in an externally applied electric field ℰ. For an exactly constant field, that is for vacuum fluctuations in presence of a constant accelerating force, we show that [Formula: see text] has a Boson-like structure with spectral state density tanh -1(E/m) and temperature T M = eℰ/mπ = av/π. Considering the vacuum fluctuations of 'classical' gyromagnetic ratio g = 1 particles we find Fermi-like structure with the same spectral state density at a smaller temperature T1 = av/2π which corresponds to the Unruh temperature of an accelerated observer.


Sign in / Sign up

Export Citation Format

Share Document