Two‐Step Sequence Multicomponent Synthesis/Reductive Rearrangement of 2‐Acyl‐2,3‐dihydrofurans for Modular Assembly of Annulated 4H‐Pyrans

Author(s):  
Maxim Demidov ◽  
Dmitry Osipov ◽  
Konstantin Korolkov ◽  
Vitaly Osyanin
2017 ◽  
Vol 3 (3) ◽  
pp. 227-234 ◽  
Author(s):  
Sunetra Jadhav ◽  
Ajinkya Patravale ◽  
Reshma Patil ◽  
Digambar Kumbhar ◽  
Vishram Karande ◽  
...  

2020 ◽  
Vol 154 (2) ◽  
pp. 135-153 ◽  
Author(s):  
Gabriel García Caballero ◽  
Donella Beckwith ◽  
Nadezhda V. Shilova ◽  
Adele Gabba ◽  
Tanja J. Kutzner ◽  
...  

Abstract The concept of biomedical significance of the functional pairing between tissue lectins and their glycoconjugate counterreceptors has reached the mainstream of research on the flow of biological information. A major challenge now is to identify the principles of structure–activity relationships that underlie specificity of recognition and the ensuing post-binding processes. Toward this end, we focus on a distinct feature on the side of the lectin, i.e. its architecture to present the carbohydrate recognition domain (CRD). Working with a multifunctional human lectin, i.e. galectin-3, as model, its CRD is used in protein engineering to build variants with different modular assembly. Hereby, it becomes possible to compare activity features of the natural design, i.e. CRD attached to an N-terminal tail, with those of homo- and heterodimers and the tail-free protein. Thermodynamics of binding disaccharides proved full activity of all proteins at very similar affinity. The following glycan array testing revealed maintained preferential contact formation with N-acetyllactosamine oligomers and histo-blood group ABH epitopes irrespective of variant design. The study of carbohydrate-inhibitable binding of the test panel disclosed up to qualitative cell-type-dependent differences in sections of fixed murine epididymis and especially jejunum. By probing topological aspects of binding, the susceptibility to inhibition by a tetravalent glycocluster was markedly different for the wild-type vs the homodimeric variant proteins. The results teach the salient lesson that protein design matters: the type of CRD presentation can have a profound bearing on whether basically suited oligosaccharides, which for example tested positively in an array, will become binding partners in situ. When lectin-glycoconjugate aggregates (lattices) are formed, their structural organization will depend on this parameter. Further testing (ga)lectin variants will thus be instrumental (i) to define the full range of impact of altering protein assembly and (ii) to explain why certain types of design have been favored during the course of evolution, besides opening biomedical perspectives for potential applications of the novel galectin forms.


2021 ◽  
Author(s):  
Yan Wu ◽  
Jin-Yang Chen ◽  
Jing Ning ◽  
Xue Jiang ◽  
Jie Deng ◽  
...  

An electrochemical multicomponent reaction was established under catalyst-, chemical-oxidant-free and mild conditions, which provides an eco-friendly and simple protocol for constructing 4-selanylpyrazoles from easily available raw materials with high yields.


2020 ◽  
Vol 56 (12) ◽  
pp. 1592-1598
Author(s):  
Ivan V. Dyachenko ◽  
Vladimir D. Dyachenko ◽  
Pavel V. Dorovatovskii ◽  
Victor N. Khrustalev ◽  
Valentine G. Nenajdenko

SynOpen ◽  
2021 ◽  
Author(s):  
Mina Ghassemi ◽  
Ali Maleki

Copper ferrite (CuFe2O4) magnetic nanoparticles (MNPs) were synthesized via thermal decomposition method and applied as a reusable and green catalyst in the synthesis of functionalized 4H-pyran derivatives using malononitrile, an aromatic aldehyde and a β-ketoester in ethanol at room temperature. Then it was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) analysis, scanning electron microscopy (SEM) images, thermo gravimetric and differential thermo gravimetric (TGA/DTG) analysis. The catalyst was recovered from the reaction mixture by applying an external magnet and decanting the mixture. Recycled catalyst was reused for several times without significant loss in its activity. Running the one-pot three-component reaction at room temperature, no use of eternal energy source and using a green solvent provide benign, mild, and environmentally friendly reaction conditions; as well, ease of catalyst recovering, catalyst recyclability, no use of column chromatography and good to excellent yields are extra advantages of this work.


Sign in / Sign up

Export Citation Format

Share Document