scholarly journals Materials Informatics: Experiment‐Oriented Materials Informatics for Efficient Exploration of Design Strategy and New Compounds for High‐Performance Organic Anode (Adv. Theory Simul. 10/2019)

2019 ◽  
Vol 2 (10) ◽  
pp. 1970035
Author(s):  
Hiromichi Numazawa ◽  
Yasuhiko Igarashi ◽  
Kosuke Sato ◽  
Hiroaki Imai ◽  
Yuya Oaki
2020 ◽  
Author(s):  
Nathaniel Park ◽  
Dmitry Yu. Zubarev ◽  
James L. Hedrick ◽  
Vivien Kiyek ◽  
Christiaan Corbet ◽  
...  

The convergence of artificial intelligence and machine learning with material science holds significant promise to rapidly accelerate development timelines of new high-performance polymeric materials. Within this context, we report an inverse design strategy for polycarbonate and polyester discovery based on a recommendation system that proposes polymerization experiments that are likely to produce materials with targeted properties. Following recommendations of the system driven by the historical ring-opening polymerization results, we carried out experiments targeting specific ranges of monomer conversion and dispersity of the polymers obtained from cyclic lactones and carbonates. The results of the experiments were in close agreement with the recommendation targets with few false negatives or positives obtained for each class.<br>


2021 ◽  
Author(s):  
Jianfeng Yang ◽  
Pengyuan Shan ◽  
Qingling Zhao ◽  
Shuquan Zhang ◽  
Lanlan Li ◽  
...  

It is still a big challenge for designing Gd3+ based nanoparticles (NPs) for T1 MRI (Magnetic Resonance Imaging) with high performance and clarifying the effects of relative time parameters for...


2018 ◽  
Vol 2 (3) ◽  
pp. 112
Author(s):  
Amal Ahmed Abdou ◽  
Iman Osama Abd El Gwad ◽  
Ayman Alsayed Altaher Mahmoud

Egyptian universities had the most powerful buildings that encourage sustainable development. Sustaining university buildings had been the main concern, thus the development focused on different aspects (social, sociological, bio-life, physical, healthy surroundings, etc.). In recent times, the main problem facing university buildings has been the high consumption of energy despite the low performance. This problem affected the interior areas and spaces used by the majority of students. The issue hindered the learning environment—which should be designed to facilitate high academic performance—from achieving its purpose. Fixing the problem required finding the errors applied in the planning policy, in order to integrate low energy consumption with high performance. This paper analyzes the design strategy, low energy design strategy, and its analysis systems in order to integrate them with the analysis of four case studies in comparative methodology. This approach helps in achieving effective observation to implement principles, policy, criteria, and strategies. The method of the paper shall help with coming up with an efficient vision to create the integrated design strategy for constructing university buildings in Egypt. The solution is characterized by low-cost energy consumption that is applicable to the conditions in Egypt and is in synchronization with sustainability as a whole vision.


2020 ◽  
Author(s):  
Jiaxing Qu ◽  
Vladan Stevanovic ◽  
Elif Ertekin ◽  
Prashun Gorai

Doping remains a bottleneck in discovering novel functional materials for applications such as thermoelectrics (TE) and photovoltaics. The current computational approach to materials discovery is to identify candidates by predicting the functional properties of a pool of known materials, and hope that the candidates can be appropriately doped. What if we could "design" new materials that have the desired functionalities and doping properties? In this work, we use an approach, wherein we perform chemical replacements in a prototype structure, to realize doping by design. We hypothesize that the doping characteristics and functional performance of the prototype structure are translated to the new compounds created by chemical replacements. Discovery of new <i>n</i>-type Zintl phases is desirable for TE; however, <i>n</i>-type Zintl phases are a rarity. We demonstrate our doping design strategy by discovering 7 new, previously-unreported ABX<sub>4</sub> Zintl phases that adopt the prototypical KGaSb<sub>4</sub> structure. Among the new phases, we computationally confirm that NaAlSb<sub>4</sub>, NaGaSb<sub>4</sub> and CsInSb<sub>4</sub> are <i>n</i>-type dopable and potentially exhibit high <i>n</i>-type TE performance, even exceeding that of KGaSb<sub>4</sub>. Our structure prototyping approach offers a promising route to discover new materials with designed doping and functional properties.


2020 ◽  
Vol 8 (2) ◽  
pp. 602-606 ◽  
Author(s):  
Jiafang Li ◽  
Wen-Cheng Chen ◽  
He Liu ◽  
Zhanxiang Chen ◽  
Danyang Chai ◽  
...  

Two dicyanopyridine-containing TADF emitters were developed via the double-twist design strategy, yielding EQEmax values of 25.8% and 21.1%.


Sign in / Sign up

Export Citation Format

Share Document