scholarly journals Engineered Microstructure Derived Hierarchical Deformation of Flexible Pressure Sensor Induces a Supersensitive Piezoresistive Property in Broad Pressure Range

2020 ◽  
Vol 7 (18) ◽  
pp. 2000154 ◽  
Author(s):  
Gang Li ◽  
Duo Chen ◽  
Chenglong Li ◽  
Wenxia Liu ◽  
Hong Liu
ACS Sensors ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 481-489 ◽  
Author(s):  
Yongrok Jeong ◽  
Jaeho Park ◽  
Jinwoo Lee ◽  
Kyuyoung Kim ◽  
Inkyu Park

2021 ◽  
pp. 100889
Author(s):  
Ran Li ◽  
Xiaohan Tian ◽  
Min Wei ◽  
Aijun Dong ◽  
Xi Pan ◽  
...  

2018 ◽  
Vol 32 (32) ◽  
pp. 1850394 ◽  
Author(s):  
Dan Bu ◽  
Si Qi Li ◽  
Yun Ming Sang ◽  
Cheng Jun Qiu

A high-sensitivity and high-transmittance flexible pressure sensor is presented in this paper. Using polydimethylsiloxane (PDMS) sensing film to cover indium tin oxide (ITO) electrodes interdigitated on the polyethylene terephthalate (PET) substrate, an interdigital capacitance (IDC) structure is constructed. The pressure and proximity sensing characteristics of the fabricated IDC sensor are investigated. The experiment results show that the IDC sensor has the piecewise linear function in different pressure range, especially sensitive to the low-pressure range with the pressure sensitivity of 6.64 kPa[Formula: see text]. Moreover, it has a good repeatability with the maximum error rate of 2.73% and a high transmittance over 90% in the wavelength range from 400 nm to 800 nm. As a human finger approaches or leaves, the proximity sensing characteristic emerges, with a maximum sensing distance of about 20 cm.


2006 ◽  
Vol 920 ◽  
Author(s):  
Zhang Hui ◽  
Tao Xiao Ming ◽  
Yu Tong Xi ◽  
Li Xin Sheng

AbstractThis paper presents an approach for decoding the pressure information exerted over a piece of fabric by means of resistive sensing. The proposed sensor includes a distributed resistive grids constructed by two systems of orthogonally contacted electrical conductive yarns, with no external sensing element to be attached on the fabric. Since the conductive yarns serve as the sensing and wiring elements simultaneously, this design simplifies the fabrication process, reduces the cost and makes the production of large area flexible pressure sensor possible. The location of the pressure applied on the fabric can be identified by detecting the position where the change of the resistances occurs between two embroidered yarns. Meanwhile, the magnitude of the pressure can be acquired by measuring the variations of the resistance. In order to eliminate the “crosstalk” effect between adjoining fibers, the yarns were separately wired on the fabric surface.


Sign in / Sign up

Export Citation Format

Share Document