scholarly journals Enhanced Electrocatalytic CO 2 Reduction to C 2+ Products by Adjusting the Local Reaction Environment with Polymer Binders

2022 ◽  
pp. 2103663
Author(s):  
Thi Ha My Pham ◽  
Jie Zhang ◽  
Mo Li ◽  
Tzu‐Hsien Shen ◽  
Youngdon Ko ◽  
...  
2019 ◽  
Author(s):  
Divya Bohra ◽  
Jehanzeb Chaudhry ◽  
Thomas Burdyny ◽  
Evgeny Pidko ◽  
wilson smith

<p>The environment of a CO<sub>2</sub> electroreduction (CO<sub>2</sub>ER) catalyst is intimately coupled with the surface reaction energetics and is therefore a critical aspect of the overall system performance. The immediate reaction environment of the electrocatalyst constitutes the electrical double layer (EDL) which extends a few nanometers into the electrolyte and screens the surface charge density. In this study, we resolve the species concentrations and potential profiles in the EDL of a CO<sub>2</sub>ER system by self-consistently solving the migration, diffusion and reaction phenomena using the generalized modified Poisson-Nernst-Planck (GMPNP) equations which include the effect of volume exclusion due to the solvated size of solution species. We demonstrate that the concentration of solvated cations builds at the outer Helmholtz plane (OHP) with increasing applied potential until the steric limit is reached. The formation of the EDL is expected to have important consequences for the transport of the CO<sub>2</sub> molecule to the catalyst surface. The electric field in the EDL diminishes the pH in the first 5 nm from the OHP, with an accumulation of protons and a concomitant depletion of hydroxide ions. This is a considerable departure from the results obtained using reaction-diffusion models where migration is ignored. Finally, we use the GMPNP model to compare the nature of the EDL for different alkali metal cations to show the effect of solvated size and polarization of water on the resultant electric field. Our results establish the significance of the EDL and electrostatic forces in defining the local reaction environment of CO<sub>2</sub> electrocatalysts.</p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1714
Author(s):  
Paweł Wiśniewski

This study presents the general characteristics of binders used in precision casting of Nickel-based superalloys. Three groups of binders were described: resins, organic compounds, and materials containing nanoparticles in alcohol or aqueous systems. This study also includes literature reports on materials commonly used and those recently replaced by water-soluble binders, i.e., ethyl silicate (ES) and hydrolysed ethyl silicate (HES). The appearance of new and interesting solutions containing nano-alumina is described, as well as other solutions at the initial stage of scientific research, such as those containing biopolymers, biodegradable polycaprolactone (PCL), or modified starch. Special attention is paid to four binders containing nano-SiO2 intended for the first layers (Ludox AM, Ludox SK) and structural layers (EHT, Remasol) of shell moulds. Their morphology, viscosity, density, reactions, and electrokinetic potential were investigated. The binders were characterized by a high solid-phase content (>28%), viscosity, and density close to that of water (1–2 mPa·s) and good electrokinetic stability. The nanoparticles contained in the binders were approximately spherically shaped with an average particle size of 16–25 nm.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 631
Author(s):  
Aleksander Cholewinski ◽  
Pengxiang Si ◽  
Marianna Uceda ◽  
Michael Pope ◽  
Boxin Zhao

Binders play an important role in electrode processing for energy storage systems. While conventional binders often require hazardous and costly organic solvents, there has been increasing development toward greener and less expensive binders, with a focus on those that can be processed in aqueous conditions. Due to their functional groups, many of these aqueous binders offer further beneficial properties, such as higher adhesion to withstand the large volume changes of several high-capacity electrode materials. In this review, we first discuss the roles of binders in the construction of electrodes, particularly for energy storage systems, summarize typical binder characterization techniques, and then highlight the recent advances on aqueous binder systems, aiming to provide a stepping stone for the development of polymer binders with better sustainability and improved functionalities.


Author(s):  
Yuanyuan Yu ◽  
Jiadeng Zhu ◽  
Ke Zeng ◽  
Mengjin Jiang

Abstract text goes here. The abstract should be a single paragraph that summarises the content of the article Compared with nanostructured silicon (Si), Si microparticle (SiMP) has more commercial prospects...


2014 ◽  
Vol 897 ◽  
pp. 262-265
Author(s):  
Michael Tupý ◽  
Vít Petranek ◽  
Jana Kosíková

The aim of the work was to propose the application for waste secondary materials as filler in polymer coating systems. Authors decided to use two different water-based epoxide binders: Lena N141 and Lena N 121 and the waste suitable materials were chosen by its chemical and physical composition and properties. Used recycled materials were glass of windscreen, glass beads, screen, glass packaging and fluorescent glass. The particle size and scanning of grain were determined. The chemical resistance and the adhesion of coating materials to the common substrate were also tested. The chemical resistance was tested with substances: distilled water, oil, petrol, acetone, 20% water solution of NaCl, 50 % water solution of ethanol, 5 % and 30 % water solution of NaOH a 20 % water solution of H2SO4.


Sign in / Sign up

Export Citation Format

Share Document