scholarly journals Establishment of a Machine Learning Model for Early and Differential Diagnosis of Pancreatic Ductal Adenocarcinoma Using Laboratory Routine Data

2021 ◽  
pp. 2100033
Author(s):  
Beilei Wang ◽  
Wenxin Wei ◽  
Zhuo Shao ◽  
Qin Qin ◽  
Zhiyong Wang ◽  
...  
Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2365
Author(s):  
Soo-Kyung Park ◽  
Sangsoo Kim ◽  
Gi-Young Lee ◽  
Sung-Yoon Kim ◽  
Wan Kim ◽  
...  

Crohn’s disease (CD) and ulcerative colitis (UC) can be difficult to differentiate. As differential diagnosis is important in establishing a long-term treatment plan for patients, we aimed to develop a machine learning model for the differential diagnosis of the two diseases using RNA sequencing (RNA-seq) data from endoscopic biopsy tissue from patients with inflammatory bowel disease (n = 127; CD, 94; UC, 33). Biopsy samples were taken from inflammatory lesions or normal tissues. The RNA-seq dataset was processed via mapping to the human reference genome (GRCh38) and quantifying the corresponding gene models that comprised 19,596 protein-coding genes. An unsupervised learning model showed distinct clusters of four classes: CD inflammatory, CD normal, UC inflammatory, and UC normal. A supervised learning model based on partial least squares discriminant analysis was able to distinguish inflammatory CD from inflammatory UC after pruning the strong classifiers of normal CD vs. normal UC. The error rate was minimal and affected only two components: 20 and 50 genes for the first and second components, respectively. The corresponding overall error rate was 0.147. RNA-seq analysis of tissue and the two components revealed in this study may be helpful for distinguishing CD from UC.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Author(s):  
Juan C. Olivares-Rojas ◽  
Enrique Reyes-Archundia ◽  
Noel E. Rodriiguez-Maya ◽  
Jose A. Gutierrez-Gnecchi ◽  
Ismael Molina-Moreno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document