Autosomal‐dominant WFS1 ‐related disorder—Report of a novel WFS1 variant and review of the phenotypic spectrum of autosomal recessive and dominant forms

Author(s):  
Aya Abu‐El‐Haija ◽  
Caroline McGowan ◽  
Deborah Vanderveen ◽  
Olaf Bodamer
Neurogenetics ◽  
2021 ◽  
Author(s):  
Katja Kloth ◽  
Bernarda Lozic ◽  
Julia Tagoe ◽  
Mariëtte J. V. Hoffer ◽  
Amelie Van der Ven ◽  
...  

AbstractANK3 encodes multiple isoforms of ankyrin-G, resulting in variegated tissue expression and function, especially regarding its role in neuronal development. Based on the zygosity, location, and type, ANK3 variants result in different neurodevelopmental phenotypes. Autism spectrum disorder has been associated with heterozygous missense variants in ANK3, whereas a more severe neurodevelopmental phenotype is caused by isoform-dependent, autosomal-dominant, or autosomal-recessive loss-of-function variants. Here, we present four individuals affected by a variable neurodevelopmental phenotype harboring a heterozygous frameshift or nonsense variant affecting all ANK3 transcripts. Thus, we provide further evidence of an isoform-based phenotypic continuum underlying ANK3-associated pathologies and expand its phenotypic spectrum.


2019 ◽  
Vol 09 (02) ◽  
pp. 117-120
Author(s):  
Pavalan Selvam ◽  
Shekhar Singh ◽  
Angita Jain ◽  
Herjot Atwal ◽  
Paldeep S. Atwal

AbstractOtospondylomegaepiphyseal dysplasia (OSMED) is an inherited autosomal dominant and recessive skeletal dysplasia caused by both heterozygous and homozygous pathogenic variants in COL11A2 encoding the α2(XI) collagen chains, a part of type XI collagen. Here, we describe a 2-year-old girl presenting from birth with a phenotype suggestive of OSMED. On whole exome sequence analysis of the family via commercially available methods, we detected two novel heterozygous pathogenic variants in the proband. In addition, we reviewed the phenotype of autosomal recessive OSMED cases with COL11A2 pathogenic variants reported to date and quantitatively highlighted the phenotypic spectrum.


US Neurology ◽  
2009 ◽  
Vol 05 (01) ◽  
pp. 34 ◽  
Author(s):  
Alessandro Ferraris ◽  
Enza Maria Valente ◽  
Anna Rita Bentivoglio ◽  
◽  
◽  
...  

Several genes have been identified as causative of autosomal dominant or recessive forms of Parkinson’s disease (PD). Bi-allelic mutations in the PTEN-induced putative kinase 1 (PINK1) gene represent the second most frequent cause of autosomal recessive parkinsonism (ARP) after PARK2/Parkin. The typicalPINK1-associated phenotype is characterized by early age at onset, slow disease progression, and excellent and sustained response to levodopa, but in rare cases the clinical presentation can be indistinguishable from that of sporadic PD. Single heterozygous rare variants in thePINK1gene, as well as in other ARP genes, have been frequently detected both in parkinsonian patients and in healthy controls. Although their pathogenetic role is still debated, these variants have been suggested to act as minor risk factors for developing PD.


2009 ◽  
Vol 4 (1) ◽  
pp. 40 ◽  
Author(s):  
Alessandro Ferraris ◽  
Enza Maria Valente ◽  
Anna Rita Bentivoglio ◽  
◽  
◽  
...  

Several genes have been identified as causative of autosomal dominant or recessive forms of Parkinson’s disease (PD). Bi-allelic mutations in the phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1) gene represent the second most frequent cause of autosomal recessive parkinsonism (ARP) after PARK2/Parkin. The typicalPINK1-associated phenotype is characterised by early age at onset, slow disease progression and excellent and sustained response to levodopa, but in rare cases the clinical presentation can be indistinguishable from that of sporadic PD. Single heterozygous rare variants in thePINK1gene, as well as in other ARP genes, have been frequently detected both in parkinsonian patients and in healthy controls. Although their pathogenetic role is still debated, these variants have been suggested to act as minor risk factors for developing PD.


2001 ◽  
Vol 21 (5) ◽  
pp. 430-440 ◽  
Author(s):  
Ira D. Davis ◽  
Katherine MacRae Dell ◽  
William E. Sweeney ◽  
Ellis D. Avner

Neurogenetics ◽  
2021 ◽  
Author(s):  
Luca Magistrelli ◽  
Roberta Croce ◽  
Fabiola De Marchi ◽  
Chiara Basagni ◽  
Miryam Carecchio ◽  
...  

AbstractPrimary familial brain calcification (PFBC) is a neurological condition characterized by the presence of intracranial calcifications, mainly involving basal ganglia, thalamus, and dentate nuclei. So far, six genes have been linked to this condition: SLC20A2, PDGFRB, PDGFB, and XPR1 inherited as autosomal-dominant trait, while MYORG and JAM2 present a recessive pattern of inheritance. Patients mainly present with movement disorders, psychiatric disturbances, and cognitive decline or are completely asymptomatic and calcifications may represent an occasional finding. Here we present three variants in SLC20A2, two exonic and one intronic, which we found in patients with PFBC associated to three different clinical phenotypes. One variant is novel and two were already described as variants of uncertain significance. We confirm the pathogenicity of these three variants and suggest a broadening of the phenotypic spectrum associated with mutations in SLC20A2.


2021 ◽  
Vol 22 (12) ◽  
pp. 6523
Author(s):  
Adrian Cordido ◽  
Marta Vizoso-Gonzalez ◽  
Miguel A. Garcia-Gonzalez

Autosomal recessive polycystic kidney disease (ARPKD) is a rare disorder and one of the most severe forms of polycystic kidney disease, leading to end-stage renal disease (ESRD) in childhood. PKHD1 is the gene that is responsible for the vast majority of ARPKD. However, some cases have been related to a new gene that was recently identified (DZIP1L gene), as well as several ciliary genes that can mimic a ARPKD-like phenotypic spectrum. In addition, a number of molecular pathways involved in the ARPKD pathogenesis and progression were elucidated using cellular and animal models. However, the function of the ARPKD proteins and the molecular mechanism of the disease currently remain incompletely understood. Here, we review the clinics, treatment, genetics, and molecular basis of ARPKD, highlighting the most recent findings in the field.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 692-694 ◽  
Author(s):  
Daniel F. Wallace ◽  
Palle Pedersen ◽  
Jeannette L. Dixon ◽  
Peter Stephenson ◽  
Jeffrey W. Searle ◽  
...  

Abstract Hemochromatosis is a common disorder characterized by excess iron absorption and accumulation of iron in tissues. Usually hemochromatosis is inherited in an autosomal recessive pattern and is caused by mutations in the HFE gene. Less common non-HFE–related forms of hemochromatosis have been reported and are caused by mutations in the transferrin receptor 2 gene and in a gene localized to chromosome 1q. Autosomal dominant forms of hemochromatosis have also been described. Recently, 2 mutations in theferroportin1 gene, which encodes the iron transport protein ferroportin1, have been implicated in families with autosomal dominant hemochromatosis from the Netherlands and Italy. We report the finding of a novel mutation (V162del) in ferroportin1 in an Australian family with autosomal dominant hemochromatosis. We propose that this mutation disrupts the function of the ferroportin1 protein, leading to impaired iron homeostasis and iron overload.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e20511-e20511
Author(s):  
Jian Sun ◽  
Weiran Wang ◽  
Danhua Wang ◽  
Hongling Yuan ◽  
Tonghui Ma

e20511 Background: Smoking and air pollution are the major causes of lung cancer; however, numerous studies have demonstrated that genetic factors also contribute to the development of lung cancer. Here, we reported an analysis of genomic features in 65 lung cancer patients with autosomal-dominant or autosomal-recessive inheritance of germline mutations. Methods: We retrospectively reviewed next-generation sequencing data of 26,904 lung cancer patients in a Chinese cohort. The germline mutation patterns, as well as the co-occurrence with somatic driver mutations were analyzed. Results: A total of 65 (0.24%) patients with heterozygous germline mutations associated with hereditary cancer syndromes were detected, including 27 (0.10%) patients with autosomal-dominant inheritance (BRCA1, BRCA2, RET and TP53) and 38 (0.14%) patients with autosomal-recessive inheritance (ATM, BLM, FANCA, FANCG, MUTYH, NBN, RECQL4 and WRN). Comparing to patients with autosomal-dominant inheritance (Age 56±17.8), patients with autosomal-recessive inheritance (Age 65±11.7, P = 0.009) were older, and there is no gender difference. Additionally, 66.7% (18/27) of patients with autosomal-dominant inheritance were identified co-mutated actionable variations, such as 12 patients harboring mutations in exon 18–21 of EGFR, 2 patients harboring ERBB2 exon 20 insertions, 3 patients harboring mutations in exon 2 of KRAS and 1 patient harboring EML4-ALK fusion. The coexistence of germline autosomal-dominant mutations and somatic driver mutations indicated that germline mutations have weak impact on lung cancer. Simultaneously, 52.6% (20/38) of patients with autosomal-recessive inheritance were identified co-mutated actionable variations, such as 15 EGFR+ patients, 2 ERBB2+ patients and 3 KRAS+ patients. And there was no significant difference in population frequency of co-mutated actionable variations between the two groups. Conclusions: In summary, studies on germline mutations of lung cancer patients may help to elucidate the etiology and mechanism of lung cancer, and may help for early detection and diagnosis, targeted therapy and improved prevention strategies.


Sign in / Sign up

Export Citation Format

Share Document