New π-Extended Naphthalene Diimides for High-Performance n-Type Organic Semiconductors with NIR Absorption Properties

2018 ◽  
Vol 7 (11) ◽  
pp. 2279-2284 ◽  
Author(s):  
Wenting Wu ◽  
Zheng Zhao ◽  
Jing Li ◽  
Ming Chen ◽  
Xike Gao
Author(s):  
Liping Yao ◽  
Danlei Zhu ◽  
Hailiang Liao ◽  
Sheik Haseena ◽  
Mahesh kumar Ravva ◽  
...  

Due to their advantages of low-cost, light-weight, and mechanical flexibility, much attention has been focused on pi-conjugated organic semiconductors. In the past decade, although many materials with high performance has...


2020 ◽  
Vol 63 (9) ◽  
pp. 1182-1190
Author(s):  
Wenjie Han ◽  
Zhongli Wang ◽  
Yunbin Hu ◽  
Xiaodi Yang ◽  
Congwu Ge ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yunqian He ◽  
Yuelin Wang ◽  
Tie Li

AbstractThe heat conduction and infrared absorption properties of the dielectric film have a great influence on the thermopile performance. Thinning the dielectric film, reducing its contact area with the silicon substrate, or adding high-absorptivity nanomaterials has been proven to be effective in improving thermopiles. However, these methods may result in a decrease in the structural mechanical strength and increases in the fabrication complexity and cost. In this work, a new performance-enhancement strategy for thermopiles by simultaneously controlling the heat conduction and infrared absorption with a TExtured DIelectric (TEDI) film is developed and presented. The TEDI film is formed in situ by a simple hard-molding process that is compatible with the fabrication of traditional thermopiles. Compared to the control FLat DIelectric (FLDI) film, the intrinsic thermal conductance of the TEDI film can be reduced by ~18–30%, while the infrared absorption can be increased by ~7–13%. Correspondingly, the responsivity and detectivity of the fabricated TEDI film-based thermopile can be significantly enhanced by ~38–64%. An optimized TEDI film-based thermopile has achieved a responsivity of 156.89 V·W−1 and a detectivity of 2.16 × 108 cm·Hz1/2·W−1, while the response time constant can remain <12 ms. These results exhibit the great potential of using this strategy to develop high-performance thermopiles and enhance other sensors with heat transfer and/or infrared absorption mechanisms.


2008 ◽  
Vol 18 (39) ◽  
pp. 4698 ◽  
Author(s):  
Myoung-Chul Um ◽  
Jeonghun Kwak ◽  
Jung-Pyo Hong ◽  
Jihoon Kang ◽  
Do Yeung Yoon ◽  
...  

2012 ◽  
Vol 24 (7) ◽  
pp. 911-915 ◽  
Author(s):  
Sun Woo Yun ◽  
Jong H. Kim ◽  
Seunghoon Shin ◽  
Hoichang Yang ◽  
Byeong-Kwan An ◽  
...  

2016 ◽  
Vol 27 (8) ◽  
pp. 1330-1338 ◽  
Author(s):  
Yong-Gang Zhen ◽  
Huan-Li Dong ◽  
Lang Jiang ◽  
Wen-Ping Hu

2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


Sign in / Sign up

Export Citation Format

Share Document