scholarly journals Simultaneously controlling heat conduction and infrared absorption with a textured dielectric film to enhance the performance of thermopiles

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yunqian He ◽  
Yuelin Wang ◽  
Tie Li

AbstractThe heat conduction and infrared absorption properties of the dielectric film have a great influence on the thermopile performance. Thinning the dielectric film, reducing its contact area with the silicon substrate, or adding high-absorptivity nanomaterials has been proven to be effective in improving thermopiles. However, these methods may result in a decrease in the structural mechanical strength and increases in the fabrication complexity and cost. In this work, a new performance-enhancement strategy for thermopiles by simultaneously controlling the heat conduction and infrared absorption with a TExtured DIelectric (TEDI) film is developed and presented. The TEDI film is formed in situ by a simple hard-molding process that is compatible with the fabrication of traditional thermopiles. Compared to the control FLat DIelectric (FLDI) film, the intrinsic thermal conductance of the TEDI film can be reduced by ~18–30%, while the infrared absorption can be increased by ~7–13%. Correspondingly, the responsivity and detectivity of the fabricated TEDI film-based thermopile can be significantly enhanced by ~38–64%. An optimized TEDI film-based thermopile has achieved a responsivity of 156.89 V·W−1 and a detectivity of 2.16 × 108 cm·Hz1/2·W−1, while the response time constant can remain <12 ms. These results exhibit the great potential of using this strategy to develop high-performance thermopiles and enhance other sensors with heat transfer and/or infrared absorption mechanisms.

2003 ◽  
Author(s):  
Heedon Hwang ◽  
Kwangmin Park ◽  
Sukho Yoon ◽  
Euijoon Yoon ◽  
Hyeonsik M. Cheong ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 615
Author(s):  
Xing Guo ◽  
Wei Wang ◽  
Rui-Tao Wen

Nickel oxide (NiO) is considered to be the best candidate for the compensatory layer of WO3-based smart windows. In this article, we demonstrate that a facile anodic polarization can dramatically improve the electrochromic performance. Unambiguous evidence of performance enhancement was demonstrated by both in situ optical response and cyclic voltammetry. Benefiting from this treatment, the quantity of voltammetric charge increased by ∼43.8% under the same test conditions, enhancing the corresponding electrochromic modulation by ∼17.6 %. The improved performance is due to the newly exposed high-valence Ni3+ ions during anion-dependent anodization. These results offer a novel strategy for the preparation of high-performance NiO films and provide valuable insights into the underlying mechanism in the electrochromic process.


Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


2010 ◽  
Vol 25 (10) ◽  
pp. 1029-1033
Author(s):  
Shi-Xing XIA ◽  
Chun-Hui YANG ◽  
Chong-Qiang ZHU ◽  
Tian-Hui MA ◽  
Meng WANG ◽  
...  

2021 ◽  
Vol 594 ◽  
pp. 531-539
Author(s):  
Liang Wu ◽  
Shaozhuan Huang ◽  
Wenda Dong ◽  
Yan Li ◽  
Zhouhao Wang ◽  
...  

Nano Energy ◽  
2021 ◽  
Vol 82 ◽  
pp. 105697
Author(s):  
Minsoo P. Kim ◽  
Chang Won Ahn ◽  
Youngsu Lee ◽  
Kyoungho Kim ◽  
Jonghwa Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document