A chronic rhinosinusitis-derived isolate ofPseudomonas aeruginosainduces acute and pervasive effects on the murine upper airway microbiome and host immune response

2016 ◽  
Vol 6 (12) ◽  
pp. 1229-1237 ◽  
Author(s):  
Emily K. Cope ◽  
Andrew N. Goldberg ◽  
Steven D. Pletcher ◽  
Susan V. Lynch
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Meghan H. Shilts ◽  
Christian Rosas-Salazar ◽  
Christian E. Lynch ◽  
Andrey Tovchigrechko ◽  
Helen H. Boone ◽  
...  

AbstractDespite being commonly used to collect upper airway epithelial lining fluid, nasal washes are poorly reproducible, not suitable for serial sampling, and limited by a dilution effect. In contrast, nasal filters lack these limitations and are an attractive alternative. To examine whether nasal filters are superior to nasal washes as a sampling method for the characterization of the upper airway microbiome and immune response, we collected paired nasal filters and washes from a group of 40 healthy children and adults. To characterize the upper airway microbiome, we used 16S ribosomal RNA and shotgun metagenomic sequencing. To characterize the immune response, we measured total protein using a BCA assay and 53 immune mediators using multiplex magnetic bead-based assays. We conducted statistical analyses to compare common microbial ecology indices and immune-mediator median fluorescence intensities (MFIs) between sample types. In general, nasal filters were more likely to pass quality control in both children and adults. There were no significant differences in microbiome community richness, α-diversity, or structure between pediatric samples types; however, these were all highly dissimilar between adult sample types. In addition, there were significant differences in the abundance of amplicon sequence variants between sample types in children and adults. In adults, total proteins were significantly higher in nasal filters than nasal washes; consequently, the immune-mediator MFIs were not well detected in nasal washes. Based on better quality control sequencing metrics and higher immunoassay sensitivity, our results suggest that nasal filters are a superior sampling method to characterize the upper airway microbiome and immune response in both children and adults.


Author(s):  
Sang Chul Park ◽  
Il-Ho Park ◽  
Joong Seob Lee ◽  
Sung Min Park ◽  
Sung Hun Kang ◽  
...  

The sinonasal microbiota in human upper airway may play an important role in chronic rhinosinusitis (CRS). Thus, this study aimed to investigate the human upper airway microbiome in patients with unilateral CRS, and compare the sinonasal microbiome of the unilateral diseased site with that of a contralateral healthy site. Thirty samples, 15 each from the diseased and healthy sites, were collected from the middle meatus and/or anterior ethmoid region of 15 patients with unilateral CRS during endoscopic sinus surgery. DNA extraction and bacterial microbiome analysis via 16S rRNA gene sequencing were then performed. Corynebacterium showed the highest relative abundance, followed by Staphylococcus in samples from both the diseased and healthy sites. Further, the relative abundances of Staphylococcus and Pseudomonas were significantly lower in samples from diseased sites than in those from healthy sites. Conversely, anaerobes, including Fusobacterium, Bacteroides, and Propionibacterium, were abundantly present in samples from both sites, more so in samples from diseased sites. However, the sites showed no significant difference with respect to richness or diversity (p > 0.05). Our results indicate that CRS might be a polymicrobial infection, and also suggest that Corynebacterium and Staphylococcus may exist as commensals on the sinus mucosal surface in the upper respiratory tract.


2019 ◽  
Vol 8 (11) ◽  
pp. 1809 ◽  
Author(s):  
Diana Vlad ◽  
Silviu Albu

Nitric oxide (NO) has emerged as an important regulator of upper airway inflammation, mainly as part of the local naso-sinusal defense mechanisms. Increased arginase activity can reduce NO levels by decreasing the availability of its precursor, L-arginine. Chronic rhinosinusitis (CRS) has been associated with low levels of nasal nitric oxide (nNO). Thus, the present study investigates the activity of arginase I (ARG1) and II (ARG2) in CRS and its possible involvement in the pathogenesis of this disease. Under endoscopic view, tissue samples of pathologic (n = 36) and normal (n = 29) rhinosinusal mucosa were collected. Arginase I and II mRNA levels were measured using real-time PCR. Our results showed low arginase I activity in all samples. The levels of ARG2 were significantly higher in patients with chronic rhinosinusitis compared to the control group (fold regulation (FR) 2.22 ± 0.42 vs. 1.31 ± 0.21, p = 0.016). Increased ARG2 expression was found in patients with CRS without nasal polyposis (FR 3.14 ± 1.16 vs. 1.31 ± 0.21, p = 0.0175), in non-allergic CRS (FR 2.55 ± 0.52 vs. 1.31 ± 0.21, p = 0.005), and non-asthmatic CRS (FR 2.42 ± 0.57 vs. 1.31 ± 0.21, p = 0.028). These findings suggest that the upregulation of ARG2 may play a role in the pathology of a distinctive phenotype of CRS.


2020 ◽  
Vol 11 ◽  
Author(s):  
Claudia P. Campillay-Véliz ◽  
Jonatan J. Carvajal ◽  
Andrea M. Avellaneda ◽  
Darling Escobar ◽  
Camila Covián ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document