scholarly journals Alzheimer’s disease associated AKAP 9 I2558M mutation alters posttranslational modification and interactome of tau and cellular functions in CRISPR‐edited human neuronal cells

2021 ◽  
Vol 17 (S2) ◽  
Author(s):  
Samuel Walter Hersh ◽  
Yang You ◽  
Roshanak Aslebagh ◽  
Scott A Shaffer ◽  
Seiko Ikezu ◽  
...  
Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 230 ◽  
Author(s):  
Anarmaa Mendsaikhan ◽  
Ikuo Tooyama ◽  
Douglas G. Walker

Neurodegenerative diseases such as Alzheimer’s disease have proven resistant to new treatments. The complexity of neurodegenerative disease mechanisms can be highlighted by accumulating evidence for a role for a growth factor, progranulin (PGRN). PGRN is a glycoprotein encoded by the GRN/Grn gene with multiple cellular functions, including neurotrophic, anti-inflammatory and lysosome regulatory properties. Mutations in the GRN gene can lead to frontotemporal lobar degeneration (FTLD), a cause of dementia, and neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Both diseases are associated with loss of PGRN function resulting, amongst other features, in enhanced microglial neuroinflammation and lysosomal dysfunction. PGRN has also been implicated in Alzheimer’s disease (AD). Unlike FTLD, increased expression of PGRN occurs in brains of human AD cases and AD model mice, particularly in activated microglia. How microglial PGRN might be involved in AD and other neurodegenerative diseases will be discussed. A unifying feature of PGRN in diseases might be its modulation of lysosomal function in neurons and microglia. Many experimental models have focused on consequences of PGRN gene deletion: however, possible outcomes of increasing PGRN on microglial inflammation and neurodegeneration will be discussed. We will also suggest directions for future studies on PGRN and microglia in relation to neurodegenerative diseases.


2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Yash Joshi ◽  
Domenico Praticò

AbstractAside from the well-known amyloid beta and tau pathologies found in Alzheimer’s disease (AD), neuroinflammation is a well-established aspect described in humans and animal models of the disease. Inflammatory perturbations are evident not only in neurons, but also in non-neuronal cells and cytokines in the AD brain. Although the amyloid hypothesis implicates amyloid beta (Aβ) as the prime initiator of the AD, brain inflammation in AD has a complex relationship between Aβ and tau. Using our work with the 5-lipoxygenase protein as an example, we suggest that at least in the case of AD, there is an interdependent and not necessarily hierarchical pathological relationship between Aβ, tau and inflammation.


2019 ◽  
Vol 30 (7) ◽  
pp. 685-700 ◽  
Author(s):  
Caitlin Nyhus ◽  
Maria Pihl ◽  
Poul Hyttel ◽  
Vanessa Jane Hall

Abstract The nucleolus is a dynamically changing organelle that is central to a number of important cellular functions. Not only is it important for ribosome biogenesis, but it also reacts to stress by instigating a nucleolar stress response and is further involved in regulating the cell cycle. Several studies report nucleolar dysfunction in Alzheimer’s disease (AD). Studies have reported a decrease in both total nucleolar volume and transcriptional activity of the nucleolar organizing regions. Ribosomes appear to be targeted by oxidation and reduced protein translation has been reported. In addition, several nucleolar proteins are dysregulated and some of these appear to be implicated in classical AD pathology. Some studies also suggest that the nucleolar stress response may be activated in AD, albeit this latter research is rather limited and requires further investigation. The purpose of this review is to draw the connections of all these studies together and signify that there are clear changes in the nucleolus and the ribosomes in AD. The nucleolus is therefore an organelle that requires more attention than previously given in relation to understanding the biological mechanisms underlying the disease.


2002 ◽  
Vol 64 (6) ◽  
pp. 2660-2666 ◽  
Author(s):  
Mark A. Smith ◽  
Maria Rudnicka-Nawrot ◽  
Peggy L. Richey ◽  
Darja Praprotnik ◽  
Paul Mulvihill ◽  
...  

2016 ◽  
Vol 37 (7) ◽  
pp. 2441-2457 ◽  
Author(s):  
Hiroki Fujii ◽  
Tetsuya Takahashi ◽  
Tomoya Mukai ◽  
Shigeru Tanaka ◽  
Naohisa Hosomi ◽  
...  

Epidemiological studies have suggested a close relationship between cerebral ischemia and Alzheimer’s disease (AD). To clarify the pathological association of tau dynamics in both diseases, we performed comprehensive studies on the posttranslational modification of tau in cerebral ischemia and reperfusion (I/R) in rats. The present study suggests that both 4-repeat and 3-repeat tau isoforms are hyperphosphorylated in cerebral I/R, similar to the case in AD. The generation of a 60-kDa Asp421-truncated tau in cerebral I/R preceded the emergence of a 17-kDa 3-repeat tau fragment and a 25-kDa 4-repeat tau fragment. The regional redistribution of tau from the neuropil to neuronal perikarya in our stroke model is thought to share similarity with that occurring in AD. In addition, immunofluorescence staining revealed the formation of axonal varicosities in cerebral I/R. Altered tau distribution may influence microtubule stability, disturbances in axonal transport, and the resulting formation of axonal varicosities. The staining profiles of granules in the ischemic cortex that were immunopositive for RD3, RD4, and AT8 in neuronal perikarya and that were argyrophilic on Gallyas-Braak staining were similar to those in AD. These findings suggest that transient cerebral ischemia shares a common pathology with AD, in the modification of tau protein.


2012 ◽  
Vol 8 (4S_Part_8) ◽  
pp. P293-P294
Author(s):  
Ian Kohler ◽  
Annette Slutter ◽  
Juliana Zoga ◽  
Susan Hingley ◽  
Brian Balin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document