Simultaneous Modulation of Magnetic and Dielectric Transition via Spin-Crossover-Tuned Spin Arrangement and Charge Distribution

2018 ◽  
Vol 130 (28) ◽  
pp. 8604-8608 ◽  
Author(s):  
Hui Zheng ◽  
Yin-Shan Meng ◽  
Guang-Li Zhou ◽  
Chun-Ying Duan ◽  
Osamu Sato ◽  
...  
2018 ◽  
Vol 57 (28) ◽  
pp. 8468-8472 ◽  
Author(s):  
Hui Zheng ◽  
Yin-Shan Meng ◽  
Guang-Li Zhou ◽  
Chun-Ying Duan ◽  
Osamu Sato ◽  
...  

Author(s):  
J. Taft∅

It is well known that for reflections corresponding to large interplanar spacings (i.e., sin θ/λ small), the electron scattering amplitude, f, is sensitive to the ionicity and to the charge distribution around the atoms. We have used this in order to obtain information about the charge distribution in FeTi, which is a candidate for storage of hydrogen. Our goal is to study the changes in electron distribution in the presence of hydrogen, and also the ionicity of hydrogen in metals, but so far our study has been limited to pure FeTi. FeTi has the CsCl structure and thus Fe and Ti scatter with a phase difference of π into the 100-ref lections. Because Fe (Z = 26) is higher in the periodic system than Ti (Z = 22), an immediate “guess” would be that Fe has a larger scattering amplitude than Ti. However, relativistic Hartree-Fock calculations show that the opposite is the case for the 100-reflection. An explanation for this may be sought in the stronger localization of the d-electrons of the first row transition elements when moving to the right in the periodic table. The tabulated difference between fTi (100) and ffe (100) is small, however, and based on the values of the scattering amplitude for isolated atoms, the kinematical intensity of the 100-reflection is only 5.10-4 of the intensity of the 200-reflection.


2021 ◽  
Author(s):  
Cyril Rajnák ◽  
Romana Mičová ◽  
Ján Moncoľ ◽  
Ľubor Dlháň ◽  
Christoph Krüger ◽  
...  

A pentadentate Schiff-base ligand 3,5Cl-L2− and NCSe− form a iron(iii) mononuclear complex [Fe(3,5Cl-L)(NCSe)], which shows a thermally induced spin crossover with a broad hysteresis width of 24 K between 123 K (warming) and 99 K (cooling).


2004 ◽  
Vol 114 ◽  
pp. 601-605 ◽  
Author(s):  
S. J. Blundell ◽  
T. Lancaster ◽  
F. L. Pratt ◽  
C. A. Steer ◽  
M. L. Brooks ◽  
...  

2003 ◽  
Vol 9 (4) ◽  
pp. 67-72 ◽  
Author(s):  
Yu.O. Klymenko ◽  
◽  
О.К. Cheremnykh ◽  

2020 ◽  
Vol 140 (10) ◽  
pp. 504-505
Author(s):  
Kaisei Enoki ◽  
Ushio Chiba ◽  
Hiroaki Miyake ◽  
Yasuhiro Tanaka

2019 ◽  
Author(s):  
Xianghai Sheng ◽  
Lee Thompson ◽  
Hrant Hratchian

This work evaluates the quality of exchange coupling constant and spin crossover gap calculations using density functional theory corrected by the Approximate Projection model. Results show that improvements using the Approximate Projection model range from modest to significant. This study demonstrates that, at least for the class of systems examined here, spin-projection generally improves the quality of density functional theory calculations of J-coupling constants and spin crossover gaps. Furthermore, it is shown that spin-projection can be important for both geometry optimization and energy evaluations. The Approximate Project model provides an affordable and practical approach for effectively correcting spin-contamination errors in molecular exchange coupling constant and spin crossover gap calculations.


Sign in / Sign up

Export Citation Format

Share Document