Sc(OTf)3-Mediated Silylation of Hydroxy Functional Groups on a Solid Surface: A Catalytic Grafting Method Operating at Room Temperature

2008 ◽  
Vol 47 (1) ◽  
pp. 109-112 ◽  
Author(s):  
Ye-Rim Yeon ◽  
Young Jun Park ◽  
Ji-Sung Lee ◽  
Jung-Woo Park ◽  
Sin-Gun Kang ◽  
...  
2008 ◽  
Vol 120 (1) ◽  
pp. 115-118 ◽  
Author(s):  
Ye-Rim Yeon ◽  
Young Jun Park ◽  
Ji-Sung Lee ◽  
Jung-Woo Park ◽  
Sin-Gun Kang ◽  
...  

Author(s):  
David Quéré ◽  
Mathilde Reyssat

Superhydrophobic materials recently attracted a lot of attention, owing to the potential practical applications of such surfaces—they literally repel water, which hardly sticks to them, bounces off after an impact and slips on them. In this short review, we describe how water repellency arises from the presence of hydrophobic microstructures at the solid surface. A drop deposited on such a substrate can float above the textures, mimicking at room temperature what happens on very hot plates; then, a vapour layer comes between the solid and the volatile liquid, as described long ago by Leidenfrost. We present several examples of superhydrophobic materials (either natural or synthetic), and stress more particularly the stability of the air cushion—the liquid could also penetrate the textures, inducing a very different wetting state, much more sticky, due to the possibility of pinning on the numerous defects. This description allows us to discuss (in quite a preliminary way) the optimal design to be given to a solid surface to make it robustly water repellent.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 623
Author(s):  
Monika Gupta ◽  
Huzein Fahmi Hawari ◽  
Pradeep Kumar ◽  
Zainal Arif Burhanudin ◽  
Nelson Tansu

The demand for carbon dioxide (CO2) gas detection is increasing nowadays. However, its fast detection at room temperature (RT) is a major challenge. Graphene is found to be the most promising sensing material for RT detection, owing to its high surface area and electrical conductivity. In this work, we report a highly edge functionalized chemically synthesized reduced graphene oxide (rGO) thin films to achieve fast sensing response for CO2 gas at room temperature. The high amount of edge functional groups is prominent for the sorption of CO2 molecules. Initially, rGO is synthesized by reduction of GO using ascorbic acid (AA) as a reducing agent. Three different concentrations of rGO are prepared using three AA concentrations (25, 50, and 100 mg) to optimize the material properties such as functional groups and conductivity. Thin films of three different AA reduced rGO suspensions (AArGO25, AArGO50, AArGO100) are developed and later analyzed using standard FTIR, XRD, Raman, XPS, TEM, SEM, and four-point probe measurement techniques. We find that the highest edge functionality is achieved by the AArGO25 sample with a conductivity of ~1389 S/cm. The functionalized AArGO25 gas sensor shows recordable high sensing properties (response and recovery time) with good repeatability for CO2 at room temperature at 500 ppm and 50 ppm. Short response and recovery time of ~26 s and ~10 s, respectively, are achieved for 500 ppm CO2 gas with the sensitivity of ~50 Hz/µg. We believe that a highly functionalized AArGO CO2 gas sensor could be applicable for enhanced oil recovery, industrial and domestic safety applications.


1984 ◽  
Vol 56 (6) ◽  
pp. 1030-1033 ◽  
Author(s):  
Joseph J. Vannelli ◽  
E. M. Schulman

2015 ◽  
Vol 123 ◽  
pp. 237-242 ◽  
Author(s):  
María C. Talio ◽  
Marcos Kaplan ◽  
Mariano Acosta ◽  
Raúl A. Gil ◽  
Marta O. Luconi ◽  
...  

2021 ◽  
Author(s):  
Zhongyan Chen ◽  
Lepeng Chen ◽  
Shou-Feng Zhang ◽  
Qianqian Zhen ◽  
Wenzhang Xiong ◽  
...  

A nickel-catalyzed synthesis of 1,3-diaryl-6H-pyrazino[2,1-b]quinazolin-6-one was developed. This method enabled to access valuable pyrazino-fused quinazolinones with tolerance of many functional groups even at room temperature. The desired pyrazino-fused quinazolinones emit...


1989 ◽  
Vol 43 (5) ◽  
pp. 810-812 ◽  
Author(s):  
Marsha D. Richmond ◽  
Robert J. Hurtubise

With the use of model compounds of widely different functionality, it was found that a 1% α-cyclodextrin/NaCl mixture could be used in place of an 80% α-cyclodextrin/NaCl mixture to obtain solid surface room-temperature fluorescence (RTF) and phosphorescence (RTP) data. Analytical figures of merit are reported for four compounds. The use of a smaller percentage of α-cyclodextrin results in lower cost; no loss of analytical integrity, compared with that for an 80% α-cyclodextrin/NaCl mixture; and easier handling of the α-cyclodextrin/NaCl mixtures.


2019 ◽  
Vol 2 (1) ◽  
pp. 50
Author(s):  
Andrie Harmaji ◽  
Claudia Claudia ◽  
Lia Asri ◽  
Bambang Sunendar ◽  
Ahmad Nuruddin

Abstract:. Suralaya power plant produces fly ash about 219.000 ton per year. Fly ash contents of silica and alumina as major components that can be used as precursors for geopolymer, a three dimensional networks aluminosilicate polymers. This research aim is to utilize fly ash for geopolymer made by mixing fly ash, fine aggregate, and alkali activator in a cubic mould and curing was carried out at room temperature for 7 and 28 days. After 28 days of curing the compressive strength of geopolymer reached 41.70 MPa. XRD characterization shows Albite (NaAlSi3O8) formation which has similarity to geopolymer compound. Fourier Transform Infra Red spectra show siloxo and sialate bond. These are typical functional groups that are found in geopolymer materials.Keyword: geopolymer, fly ash, aluminosilicate, alkali activator, albite, siloxo, sialateAbstrak: Pembangkit Listrik Tenaga Uap (PLTU) Suralaya menghasilkan fly ash (abu terbang) sekitar 219.000 ton per tahun. Fly ash memiliki silika dan alumina sebagai komponen utama yang dapat digunakan sebagai prekursor untuk geopolimer, suatu material polimer aluminosilikat tiga dimensi. Penelitian ini bertujuan untuk memanfaatkan fly ash untuk geopolimer yang dibuat dengan mencampur fly ash, agregat halus, dan aktivator alkali dalam cetakan kubik dan pengawetan dilakukan pada suhu kamar selama 7 dan 28 hari. Setelah 28 hari curing kekuatan tekan geopolimer mencapai 41,70 MPa. Karakterisasi XRD menunjukkan pembentukan Albite (NaAlSi3O8) yang memiliki kemiripan dengan senyawa geopolimer. Hasil spektroskopi Fourier Transform Infra Red (FTIR) menunjukkan ikatan siloxo dan sialate yang merupakan gugus fungsional khas yang ditemukan dalam geopolimer.Kata Kunci: geopolimer, abu terbang, aluminosilikat, alkali aktivator, albite, siloxo, sialate


Nanoscale ◽  
2021 ◽  
Author(s):  
Wenbo Liu ◽  
Junwei Zeng ◽  
Yixun Gao ◽  
Hao Li ◽  
Nicolaas Frans de Rooij ◽  
...  

Special functional groups to modify the surface of graphene has received much attention since it enables the charge transfer enhancement, thus realizing the gas-sensing at room temperature. In this work,...


Sign in / Sign up

Export Citation Format

Share Document