Green and one‐pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation

2017 ◽  
Vol 32 (2) ◽  
Author(s):  
Hamed Nosrati ◽  
Marziyeh Salehiabar ◽  
Elahe Attari ◽  
Soodabeh Davaran ◽  
Hossein Danafar ◽  
...  
Drug Research ◽  
2018 ◽  
Vol 69 (05) ◽  
pp. 277-283 ◽  
Author(s):  
Hamed Nosrati ◽  
Hossein Hamzehei ◽  
Saeed Afroogh ◽  
Seyedeh Ashabi ◽  
Elahe Attari ◽  
...  

AbstractIn this study we reported the synthesis of L-phenyl alanine (Phe) & L-tyrosine (Tyr) Natural Amino acids coated iron oxide magnetic nanoparticles under one-pot and in situ reaction. Functionalized iron oxide magnetic nanoparticles were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Vibrating Sample Magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) techniques. Cellular toxicity of amino acids coated iron oxide magnetic nanoparticles was also investigated on HEK-293 cell lines. Additionally, a hemolysis test of as prepared magnetic nanoparticles were performed. It was found that the synthesized Phe and Tyr coated magnetic nanoparticles (F@Phe NPs and F@Tyr NPs) were spherical in shape with an average size less than 25 nm, also the saturation magnetization (Ms) of the F@Phe NPs and F@Tyr NPs were about 30.02 and 58.23 emu/g, respectively, which was lower than those of bare Fe3O4. The TGA results show that apart from this weight loss, the coated sample shows a weight loss of 5.48, and 6.88% respectively corresponding to loss of Tyr, and Phe which is coated on the Fe3O4 nanoparticles. At a high concentration, less than 2.92 and 3.13% hemolytic activity were observed for F@Phe NPs and F@Tyr NPs, respectively. The F@Phe NPs and F@Tyr NPs show the possibility of using this nanoparticles in the development of in vitro and in vivo pharmaceutical and biomedical fields due to do not possess a toxic effect, good ζ-potential and related small and narrow size distribution.


2019 ◽  
Author(s):  
Raffaele Ricco ◽  
Heinz Amenitsch ◽  
paolo falcaro

<div>Here, we studied a catalytically active and magnetically responsive porous bio-composite obtained from the synthesis of ZIF-8 in presence of iron oxide magnetic nanoparticles and horseradish peroxidase (HRP) enzyme as guest species. Using a one-pot approach in water the precursors of ZIF-8 (zinc acetate and 2-methylimidazole) spontaneously self-assembles around the guest species. We characterized the composite by means of XRD, SEM, FTIR, AFM, and CLSM. SAXS investigation of the kinetics of crystallization showed how the presence of the guest species can act as nucleation seeds. Moreover, we found that the bio-catalytic activity of the HRP/MNP@ZIF-8 biocomposite is 5 times higher than the analoguous composite without MNPs.</div>


2019 ◽  
Author(s):  
Raffaele Ricco ◽  
Heinz Amenitsch ◽  
paolo falcaro

<div>Here, we studied a catalytically active and magnetically responsive porous bio-composite obtained from the synthesis of ZIF-8 in presence of iron oxide magnetic nanoparticles and horseradish peroxidase (HRP) enzyme as guest species. Using a one-pot approach in water the precursors of ZIF-8 (zinc acetate and 2-methylimidazole) spontaneously self-assembles around the guest species. We characterized the composite by means of XRD, SEM, FTIR, AFM, and CLSM. SAXS investigation of the kinetics of crystallization showed how the presence of the guest species can act as nucleation seeds. Moreover, we found that the bio-catalytic activity of the HRP/MNP@ZIF-8 biocomposite is 5 times higher than the analoguous composite without MNPs.</div>


Drug Research ◽  
2017 ◽  
Vol 68 (05) ◽  
pp. 280-285 ◽  
Author(s):  
Marziyeh Salehiabar ◽  
Hamed Nosrati ◽  
Soodabeh Davaran ◽  
Hossein Danafar ◽  
Hamidreza Manjili

AbstractNatural L-aspartic acid coated iron oxide magnetic nanoparticles (Asp@IONPs) were prepared by a one pot, in-situ and green co–precipitation method in an aqueous medium. Functionalized iron oxide magnetic nanoparticles (IONPs) were characterized by Vibrating Sample Magnetometer (VSM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) techniques. Cellular toxicity of IONPs was also investigated on HEK-293 cell lines. The results showed that the zeta potential of Asp@IONPs was about −21.1 mV and the average size was 17.80±3.09 nm. Cell toxicity results show that as prepared IONPs are biocompatible. Asp@IONPs show the possibility of using these nanoparticles in the development of in vitro and in vivo biomedical fields due to do not possess a toxic effect, good ζ-potential and related small and narrow size distribution.


2020 ◽  
Vol 56 (43) ◽  
pp. 5775-5778 ◽  
Author(s):  
Raffaele Ricco ◽  
Peter Wied ◽  
Bernd Nidetzky ◽  
Heinz Amenitsch ◽  
Paolo Falcaro

A porous model bioreactor is obtained combining zeolitic imidazolate framework ZIF-8 with horseradish peroxidase and iron oxide magnetic nanoparticles in a one-pot process, in water at room temperature.


2020 ◽  
Vol 10 (2) ◽  
pp. 166-174
Author(s):  
Mehdi Khoshneviszadeh ◽  
Sarah Zargarnezhad ◽  
Younes Ghasemi ◽  
Ahmad Gholami

Background: Magnetic cell immobilization has been introduced as a novel, facile and highly efficient approach for cell separation. A stable attachment between bacterial cell wall with superparamagnetic iron oxide nanoparticles (SPIONs) would enable the microorganisms to be affected by an outer magnetic field. At high concentrations, SPIONs produce reactive oxygen species in cytoplasm, which induce apoptosis or necrosis in microorganisms. Choosing a proper surface coating could cover the defects and increase the efficiency. Methods: In this study, asparagine, APTES, lipo-amino acid and PEG surface modified SPIONs was synthesized by co-precipitation method and characterized by FTIR, TEM, VSM, XRD, DLS techniques. Then, their protective effects against four Gram-positive and Gram-negative bacterial strains including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were examined through microdilution broth and compared to naked SPION. Results: The evaluation of characterization results showed that functionalization of magnetic nanoparticles could change their MS value, size and surface charges. Also, the microbial analysis revealed that lipo-amino acid coated magnetic nanoparticles has the least adverse effect on microbial strain among tested SPIONs. Conclusion: This study showed lipo-amino acid could be considered as the most protective and even promotive surface coating, which is explained by its optimizing effect on cell penetration and negligible reductive effects on magnetic properties of SPIONs. lipo-amino acid coated magnetic nanoparticles could be used in microbial biotechnology and industrial microbiology.


2021 ◽  
pp. 089270572098557
Author(s):  
M Abu-Abdeen ◽  
O Saber ◽  
E Mousa

A solvent thermal method which depends on a thermal process under critical temperature and pressure was used to prepare cobalt iron oxide magnetic nanoparticles with a molar ratio 2. The prepared particles were in the form of nanoparticles with diameter ranging from 5 to 10 nm and with amorphous structure. Magnetic hysteresis behavior with saturation magnetization 36.31 emu/g and coercivity 4 Oe were observed for the nanoparticles. Polyvinyl alcohol was loaded with different concentrations of cobalt iron oxide nanoparticles using casting technique. Hysteresis loops for the polymer films were observed and both the saturation magnetization and coercivity were increased from 0.36 to 16.03 emu/g and 115 to 293 Oe for samples containing 5 and 20 wt% of nanoparticles, respectively. The elastic modulus of films was increased from 2.7 to 4.9 GPa for unloaded and loaded samples with 20 wt%, respectively. The storage modulus of the polymer films was found to obey the percolation behavior.


Sign in / Sign up

Export Citation Format

Share Document