Epoxidation of cyclohexene with H 2 O 2 over efficient water‐tolerant heterogeneous catalysts composed of mono‐substituted phosphotungstic acid on co‐functionalized SBA‐15

Author(s):  
Manman Jin ◽  
Qingtao Niu ◽  
Zhenmei Guo ◽  
Zhiguo Lv
2019 ◽  
Vol 6 (1) ◽  
pp. 44-52 ◽  
Author(s):  
Chengjiang Fang ◽  
Yan Li ◽  
Zhaozhuo Yu ◽  
Hu Li ◽  
Song Yang

Biomass, as the most abundant and renewable organic carbon source, can be upgraded into various value-added platform molecules. To implement more sustainable and economic catalytic biomass valorization, reusable heterogeneous catalysts would be one of the preferable choices. In this work, a series of phosphotungstic acid-based solid hybrids were produced by assembly of phosphotungstic acid with different pyridines using a facile solvothermal method. The obtained 3- phenylpyridine-phosphotungstate hybrid displayed superior catalytic performance in the upgrade of fructose to methyl levulinate with 71.2% yield and 83.2% fructose conversion at 140 ºC for 8 h in methanol, a bio-based and environmentally friendly solvent, which was probably due to its relatively large pore size and high hydrophobicity. This low-cost and eco-friendly catalytic process could be simply operated in a single pot without cumbersome separation steps. In addition, the 3- phenylpyridine-phosphotungstate catalyst was able to be reused for four times with little deactivation.


2020 ◽  
Vol 61 (5) ◽  
pp. 775-785
Author(s):  
A. A. Bryzhin ◽  
A. K. Buryak ◽  
M. G. Gantman ◽  
V. M. Zelikman ◽  
M. I. Shilina ◽  
...  

Author(s):  
E. N. Albert

Silver tetraphenylporphine sulfonate (Ag-TPPS) was synthesized in this laboratory and used as an electron dense stain for elastic tissue (Fig 1). The procedures for the synthesis of tetraphenylporphine sulfonate and the staining method for mature elastic tissue have been described previously.The fine structure of developing elastic tissue was observed in fetal and new born rat aorta using tetraphenylporphine sulfonate, phosphotungstic acid, uranyl acetate and lead citrate. The newly forming elastica consisted of two morphologically distinct components. These were a central amorphous and a peripheral fibrous. The ratio of the central amorphous and the peripheral fibrillar portion changed in favor of the former with increasing age.It was also observed that the staining properties of the two components were entirely different. The peripheral fibrous component stained with uranyl acetate and/or lead citrate while the central amorphous portion demonstrated no affinity for these stains. On the other hand, the central amorphous portion of developing elastic fibers stained vigorously with silver tetraphenylporphine sulfonate, while the fibrillar part did not (compare figs 2, 3, 4). Based upon the above observations it is proposed that developing elastica consists of two components that are morphologically and chemically different.


Author(s):  
J. Quatacker ◽  
W. De Potter

Mucopolysaccharides have been demonstrated biochemically in catecholamine-containing subcellular particles in different rat, cat and ox tissues. As catecholamine-containing granules seem to arise from the Golgi apparatus and some also from the axoplasmic reticulum we examined wether carbohydrate macromolecules could be detected in the small and large dense core vesicles and in structures related to them. To this purpose superior cervical ganglia and irises from rabbit and cat and coeliac ganglia and their axons from dog were subjected to the chromaffin reaction to show the distribution of catecholamine-containing granules. Some material was also embedded in glycolmethacrylate (GMA) and stained with phosphotungstic acid (PTA) at low pH for the detection of carbohydrate macromolecules.The chromaffin reaction in the perikarya reveals mainly large dense core vesicles, but in the axon hillock, the axons and the terminals, the small dense core vesicles are more prominent. In the axons the small granules are sometimes seen inside a reticular network (fig. 1).


Author(s):  
Alexis T. Bell

Heterogeneous catalysts, used in industry for the production of fuels and chemicals, are microporous solids characterized by a high internal surface area. The catalyticly active sites may occur at the surface of the bulk solid or of small crystallites deposited on a porous support. An example of the former case would be a zeolite, and of the latter, a supported metal catalyst. Since the activity and selectivity of a catalyst are known to be a function of surface composition and structure, it is highly desirable to characterize catalyst surfaces with atomic scale resolution. Where the active phase is dispersed on a support, it is also important to know the dispersion of the deposited phase, as well as its structural and compositional uniformity, the latter characteristics being particularly important in the case of multicomponent catalysts. Knowledge of the pore size and shape is also important, since these can influence the transport of reactants and products through a catalyst and the dynamics of catalyst deactivation.


Author(s):  
A. K. Datye ◽  
D. S. Kalakkad ◽  
L. F. Allard ◽  
E. Völkl

The active phase in heterogeneous catalysts consists of nanometer-sized metal or oxide particles dispersed within the tortuous pore structure of a high surface area matrix. Such catalysts are extensively used for controlling emissions from automobile exhausts or in industrial processes such as the refining of crude oil to produce gasoline. The morphology of these nano-particles is of great interest to catalytic chemists since it affects the activity and selectivity for a class of reactions known as structure-sensitive reactions. In this paper, we describe some of the challenges in the study of heterogeneous catalysts, and provide examples of how electron holography can help in extracting details of particle structure and morphology on an atomic scale.Conventional high-resolution TEM imaging methods permit the image intensity to be recorded, but the phase information in the complex image wave is lost. However, it is the phase information which is sensitive at the atomic scale to changes in specimen thickness and composition, and thus analysis of the phase image can yield important information on morphological details at the nanometer level.


Sign in / Sign up

Export Citation Format

Share Document